Tìm x: a,x(x-5)-4x+20=0 b,x^4-x^3-x+1=0 c,x^2+y+2xy d,x^2-1-y^2+2y 03/08/2021 Bởi Alaia Tìm x: a,x(x-5)-4x+20=0 b,x^4-x^3-x+1=0 c,x^2+y+2xy d,x^2-1-y^2+2y
Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\x\left( {x – 5} \right) – 4x + 20 = 0\\ \Leftrightarrow x\left( {x – 5} \right) – \left( {4x – 20} \right) = 0\\ \Leftrightarrow x\left( {x – 5} \right) – 4.\left( {x – 5} \right) = 0\\ \Leftrightarrow \left( {x – 5} \right)\left( {x – 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 5 = 0\\x – 4 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 5\\x = 4\end{array} \right.\\b,\\{x^4} – {x^3} – x + 1 = 0\\ \Leftrightarrow \left( {{x^4} – {x^3}} \right) – \left( {x – 1} \right) = 0\\ \Leftrightarrow {x^3}\left( {x – 1} \right) – \left( {x – 1} \right) = 0\\ \Leftrightarrow \left( {x – 1} \right)\left( {{x^3} – 1} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x – 1 = 0\\{x^3} – 1 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 1\\{x^3} = 1\end{array} \right. \Leftrightarrow x = 1\\d,\\{x^2} – 1 – {y^2} + 2y\\ = {x^2} – \left( {{y^2} – 2y + 1} \right)\\ = {x^2} – {\left( {y – 1} \right)^2}\\ = \left( {x – y + 1} \right)\left( {x + y – 1} \right)\end{array}\) Em xem lại đề câu c nhé! Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
x\left( {x – 5} \right) – 4x + 20 = 0\\
\Leftrightarrow x\left( {x – 5} \right) – \left( {4x – 20} \right) = 0\\
\Leftrightarrow x\left( {x – 5} \right) – 4.\left( {x – 5} \right) = 0\\
\Leftrightarrow \left( {x – 5} \right)\left( {x – 4} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x – 5 = 0\\
x – 4 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 5\\
x = 4
\end{array} \right.\\
b,\\
{x^4} – {x^3} – x + 1 = 0\\
\Leftrightarrow \left( {{x^4} – {x^3}} \right) – \left( {x – 1} \right) = 0\\
\Leftrightarrow {x^3}\left( {x – 1} \right) – \left( {x – 1} \right) = 0\\
\Leftrightarrow \left( {x – 1} \right)\left( {{x^3} – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x – 1 = 0\\
{x^3} – 1 = 0
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = 1\\
{x^3} = 1
\end{array} \right. \Leftrightarrow x = 1\\
d,\\
{x^2} – 1 – {y^2} + 2y\\
= {x^2} – \left( {{y^2} – 2y + 1} \right)\\
= {x^2} – {\left( {y – 1} \right)^2}\\
= \left( {x – y + 1} \right)\left( {x + y – 1} \right)
\end{array}\)
Em xem lại đề câu c nhé!