Tìm A biết: A = $\frac{1+2+2^2+2^3+2^4+…+2^{2019}}{1-2^{2020}}$

Tìm A biết:
A = $\frac{1+2+2^2+2^3+2^4+…+2^{2019}}{1-2^{2020}}$

0 bình luận về “Tìm A biết: A = $\frac{1+2+2^2+2^3+2^4+…+2^{2019}}{1-2^{2020}}$”

  1. Đặt $B=1+2+2^2+2^3+2^4+…+2^{2019}$

    $⇒2B=2+2^2+2^3+2^4+2^5+…+2^{2020}$

    $⇒2B-B=2+2^2+2^3+2^4+2^5+…+2^{2020}-1-2-2^2-2^3-2^4-…-2^{2019}$

    $⇔B=2^{2020}-1$

    Khi đó $A=\dfrac{B}{1-2^{2020}}=\dfrac{2^{2020}-1}{1-2^{2020}}=\dfrac{-(1-2^{2020})}{1-2^{2020}}=-1$

    Bình luận
  2. Gọi B = 1 + 2^2 + 2^3 + 2^4 + …. + 2^2019

    Ta có : 2B = 2 + 2^3 + 2^4  + 2^5+… + 2^2020

     2B – B = 2 + 2^3 + 2^4  + 2^5+… + 2^2020 – 1 – 2^2 – 2^3 – 2^4 – …. – 2^2019

    B = 1 – 2^2020

    ⇒ A =$\frac{1 – 2^2020}{1- 2^2020}$ = 1

    Vậy A = 1

    Bình luận

Viết một bình luận