Tìm `A_{max}` biết `A = (-2|x-2018| – 2021)/(2020+|x – 2018|)` 12/08/2021 Bởi Gabriella Tìm `A_{max}` biết `A = (-2|x-2018| – 2021)/(2020+|x – 2018|)`
Đáp án: $\begin{array}{l}A = \dfrac{{ – 2\left| {x – 2018} \right| – 2021}}{{2020 + \left| {x – 2018} \right|}}\\ = \dfrac{{ – 2\left| {x – 2018} \right| – 4040 + 2019}}{{2020 + \left| {x – 2018} \right|}}\\ = \dfrac{{ – 2.\left( {2020 + \left| {x – 2018} \right|} \right) + 2019}}{{2020 + \left| {x – 2018} \right|}}\\ = – 2 + \dfrac{{2019}}{{2020 + \left| {x – 2018} \right|}}\\Do:\left| {x – 2018} \right| \ge 0\\ \Leftrightarrow \left| {x – 2018} \right| + 2020 \ge 2020\\ \Leftrightarrow \dfrac{1}{{2020 + \left| {x – 2018} \right|}} \le \dfrac{1}{{2020}}\\ \Leftrightarrow \dfrac{{2019}}{{2020 + \left| {x – 2018} \right|}} \le \dfrac{{2019}}{{2020}}\\ \Leftrightarrow – 2 + \dfrac{{2019}}{{2020 + \left| {x – 2018} \right|}} \le – 2 + \dfrac{{2019}}{{2020}}\\ \Leftrightarrow A \le \dfrac{{ – 2021}}{{2020}}\\ \Leftrightarrow GTLN:A = \dfrac{{ – 2021}}{{2020}}\\Khi:x = 2018\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
A = \dfrac{{ – 2\left| {x – 2018} \right| – 2021}}{{2020 + \left| {x – 2018} \right|}}\\
= \dfrac{{ – 2\left| {x – 2018} \right| – 4040 + 2019}}{{2020 + \left| {x – 2018} \right|}}\\
= \dfrac{{ – 2.\left( {2020 + \left| {x – 2018} \right|} \right) + 2019}}{{2020 + \left| {x – 2018} \right|}}\\
= – 2 + \dfrac{{2019}}{{2020 + \left| {x – 2018} \right|}}\\
Do:\left| {x – 2018} \right| \ge 0\\
\Leftrightarrow \left| {x – 2018} \right| + 2020 \ge 2020\\
\Leftrightarrow \dfrac{1}{{2020 + \left| {x – 2018} \right|}} \le \dfrac{1}{{2020}}\\
\Leftrightarrow \dfrac{{2019}}{{2020 + \left| {x – 2018} \right|}} \le \dfrac{{2019}}{{2020}}\\
\Leftrightarrow – 2 + \dfrac{{2019}}{{2020 + \left| {x – 2018} \right|}} \le – 2 + \dfrac{{2019}}{{2020}}\\
\Leftrightarrow A \le \dfrac{{ – 2021}}{{2020}}\\
\Leftrightarrow GTLN:A = \dfrac{{ – 2021}}{{2020}}\\
Khi:x = 2018
\end{array}$