Tìm x, biết: x+`x/(1+2)`+`x/(1+2+3)`+…+`x/(1+2+…+4041)`=4041 11/07/2021 Bởi Savannah Tìm x, biết: x+`x/(1+2)`+`x/(1+2+3)`+…+`x/(1+2+…+4041)`=4041
Đáp án: `x=2021` Giải thích các bước giải: `x+x/(1+2)+x/(1+2+3)+…+x/(1+2+3+…+4041)=4041` `=>x*(1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+4041))=4041``=>`$x\cdot\left(1+\dfrac{1}{3}+\dfrac{1}{6}\ \!\! +\ \!\!.\!.\!.+\ \dfrac{1}{\dfrac{(4041+1).4041}{2}}\right)=4041$`=>`$x\cdot\left(1+\dfrac{1}{3}+\dfrac{1}{6}\ \!\!+\ \!\!.\!.\!.+\ \dfrac{1}{\dfrac{4042.4041}{2}}\right)=4041$ `=>2x*(1/2+1/6+1/12+…+1/4041.4042)=4041` `=>2x*(1/1.2+1/2.3+1/3.4+…+1/4041.4042)=4041` `=>2x*(1-1/2+1/2-1/3+1/3-1/4+1/4+…+1/4041-1/4042)=4041` `=>2x*(1-1/4042)=4041` `=>2x*4041/4042=4041` `=>2x=4041:4041/4042` `=>2x=4042` `=>x=4042:2` `=>x=2021` Vậy `x=2021`. Bình luận
Đáp án + Giải thích các bước giải: `x+x/(1+2)+x/(1+2+3)+…+x/(1+2+…+4041)=4041``=>x(1+1/(1+2)+1/(1+2+3)+…+1/(1+2+…+4041))=4041``=>x[1+1/((2(2+1))/2)+1/((3(3+1))/2)+…+1/((4041(4041+1))/2)]=4041``=>2x[1/1.2+1/(2.3)+1/(3.4)+…+1/(4041.4042)]=4041``=>2x[1/1-1/2+1/2-1/3+1/3-1/4+…+1/4041-1/4042]=4041``=>2x[1/1-1/4042]=4041``=>2x[4042/4042-1/4042]=4041``=>2x. 4041/4042=4041``=>2x. 4041/4042=4041``=>2x=4041:4041/4042``=>2x=4041. 4042/4041``=>2x=4042``=>x=4042:2` `=>x=2021` Bình luận
Đáp án:
`x=2021`
Giải thích các bước giải:
`x+x/(1+2)+x/(1+2+3)+…+x/(1+2+3+…+4041)=4041`
`=>x*(1+1/(1+2)+1/(1+2+3)+…+1/(1+2+3+…+4041))=4041`
`=>`$x\cdot\left(1+\dfrac{1}{3}+\dfrac{1}{6}\ \!\! +\ \!\!.\!.\!.+\ \dfrac{1}{\dfrac{(4041+1).4041}{2}}\right)=4041$
`=>`$x\cdot\left(1+\dfrac{1}{3}+\dfrac{1}{6}\ \!\!+\ \!\!.\!.\!.+\ \dfrac{1}{\dfrac{4042.4041}{2}}\right)=4041$
`=>2x*(1/2+1/6+1/12+…+1/4041.4042)=4041`
`=>2x*(1/1.2+1/2.3+1/3.4+…+1/4041.4042)=4041`
`=>2x*(1-1/2+1/2-1/3+1/3-1/4+1/4+…+1/4041-1/4042)=4041`
`=>2x*(1-1/4042)=4041`
`=>2x*4041/4042=4041`
`=>2x=4041:4041/4042`
`=>2x=4042`
`=>x=4042:2`
`=>x=2021`
Vậy `x=2021`.
Đáp án + Giải thích các bước giải:
`x+x/(1+2)+x/(1+2+3)+…+x/(1+2+…+4041)=4041`
`=>x(1+1/(1+2)+1/(1+2+3)+…+1/(1+2+…+4041))=4041`
`=>x[1+1/((2(2+1))/2)+1/((3(3+1))/2)+…+1/((4041(4041+1))/2)]=4041`
`=>2x[1/1.2+1/(2.3)+1/(3.4)+…+1/(4041.4042)]=4041`
`=>2x[1/1-1/2+1/2-1/3+1/3-1/4+…+1/4041-1/4042]=4041`
`=>2x[1/1-1/4042]=4041`
`=>2x[4042/4042-1/4042]=4041`
`=>2x. 4041/4042=4041`
`=>2x. 4041/4042=4041`
`=>2x=4041:4041/4042`
`=>2x=4041. 4042/4041`
`=>2x=4042`
`=>x=4042:2`
`=>x=2021`