tìm x biết: 8-|1-3x|=3 |x-1|+3=2.x (0,4x-1,3)^2=5,29 (x-3)^10=(x-30^11 {1/2}^2x-1=1/8 17/08/2021 Bởi Ximena tìm x biết: 8-|1-3x|=3 |x-1|+3=2.x (0,4x-1,3)^2=5,29 (x-3)^10=(x-30^11 {1/2}^2x-1=1/8
8-|1-3x|=3 ⇔ |1-3x|=5 ⇔ \(\left[ \begin{array}{l}1-3x=5\\1-3x=-5\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}3x=-4\\3x=6\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=-\frac{4}{3} \\x=2\end{array} \right.\) |x-1|+3=2.x ⇔ |x-1|=2x-3 ⇔ \(\left[ \begin{array}{l}x-1=2x-3\\x-1=3-2x\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}-x=-2\\3x=4\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x=2\\x=\frac{4}{3} \end{array} \right.\) (0,4x-1,3)²=5,29 ⇔ \(\left[ \begin{array}{l}0,4x-1,3=2,3\\0,4x-1,3=-2,3\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}0,4x=3,6\\0,4x=2,6\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=9\\x=6,5\end{array} \right.\) (x-3)^10=(x-3)^11 ⇔ (x-3)^10 – (x-3)^11 = 0 ⇔ (x-3)^10.[1-(x-3)] =0 ⇔ (x-3)^10.(1-x+3) = 0 ⇔ (x-3)^10.(4-x)=0 ⇔ \(\left[ \begin{array}{l}(x-3)^{10}=0\\4-x=0\end{array} \right.\) ⇔ \(\left[ \begin{array}{l}x=3\\x=4\end{array} \right.\) ($\frac{1}{2}$ )²x – 1 = 1/8 ⇔ $\frac{1}{4}$x = 9/8 ⇔ x = $\frac{9}{2}$ Bình luận
Đáp án: Giải thích các bước giải: a/ $8-|1-3x|=3$⇔ $|1-3x|=8-3=5$⇔ \(\left[ \begin{array}{l}1-3x=5\\1-3x=-5\end{array} \right.\)⇔ \(\left[ \begin{array}{l}x=-\frac{4}{3}\\x=2\end{array} \right.\) b/ $|x-1|+3=2x$⇔ $|x-1|=2x-3$⇔ \(\left[ \begin{array}{l}x-1=2x-3\\x-1=-2x+3\end{array} \right.\)⇔ \(\left[ \begin{array}{l}x=2\\x=\frac{4}{3}\end{array} \right.\) c/ $(x-3)^{10}=(x-3)^{11}$⇔ \(\left[ \begin{array}{l}x-3=1\\x-3=0\end{array} \right.\)⇔ \(\left[ \begin{array}{l}x=4\\x=3\end{array} \right.\) d/ $(\frac{1}{2})^2.x-1=\frac{1}{8}$⇔ $\frac{1}{4}.x=\frac{1}{8}+1=\frac{9}{8}$⇔ $x=\frac{9}{8}:\frac{1}{4}=\frac{9}{2}$Chúc bạn học tốt !! Bình luận
8-|1-3x|=3
⇔ |1-3x|=5
⇔ \(\left[ \begin{array}{l}1-3x=5\\1-3x=-5\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}3x=-4\\3x=6\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=-\frac{4}{3} \\x=2\end{array} \right.\)
|x-1|+3=2.x
⇔ |x-1|=2x-3
⇔ \(\left[ \begin{array}{l}x-1=2x-3\\x-1=3-2x\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}-x=-2\\3x=4\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x=2\\x=\frac{4}{3} \end{array} \right.\)
(0,4x-1,3)²=5,29
⇔ \(\left[ \begin{array}{l}0,4x-1,3=2,3\\0,4x-1,3=-2,3\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}0,4x=3,6\\0,4x=2,6\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=9\\x=6,5\end{array} \right.\)
(x-3)^10=(x-3)^11
⇔ (x-3)^10 – (x-3)^11 = 0
⇔ (x-3)^10.[1-(x-3)] =0
⇔ (x-3)^10.(1-x+3) = 0
⇔ (x-3)^10.(4-x)=0
⇔ \(\left[ \begin{array}{l}(x-3)^{10}=0\\4-x=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=3\\x=4\end{array} \right.\)
($\frac{1}{2}$ )²x – 1 = 1/8
⇔ $\frac{1}{4}$x = 9/8
⇔ x = $\frac{9}{2}$
Đáp án:
Giải thích các bước giải:
a/ $8-|1-3x|=3$
⇔ $|1-3x|=8-3=5$
⇔ \(\left[ \begin{array}{l}1-3x=5\\1-3x=-5\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=-\frac{4}{3}\\x=2\end{array} \right.\)
b/ $|x-1|+3=2x$
⇔ $|x-1|=2x-3$
⇔ \(\left[ \begin{array}{l}x-1=2x-3\\x-1=-2x+3\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=2\\x=\frac{4}{3}\end{array} \right.\)
c/ $(x-3)^{10}=(x-3)^{11}$
⇔ \(\left[ \begin{array}{l}x-3=1\\x-3=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=4\\x=3\end{array} \right.\)
d/ $(\frac{1}{2})^2.x-1=\frac{1}{8}$
⇔ $\frac{1}{4}.x=\frac{1}{8}+1=\frac{9}{8}$
⇔ $x=\frac{9}{8}:\frac{1}{4}=\frac{9}{2}$
Chúc bạn học tốt !!