Tìm x, biết a) x(2x-7)-4x+14=0 b)x(x-1)+2x-2=0 c)x+x^2-x^3-x^4=0 d)2x^3+3x^2+2x+3=0 19/08/2021 Bởi Ximena Tìm x, biết a) x(2x-7)-4x+14=0 b)x(x-1)+2x-2=0 c)x+x^2-x^3-x^4=0 d)2x^3+3x^2+2x+3=0
Đáp án: Giải thích các bước giải: a/ $x(2x-7)-4x+14=0$⇔ $2x^2-7x-4x+14=0$⇔ $2x^2-11x+14=0$⇔ $2x^2-4x-7x+14=0$⇔ $2x(x-2)-7(x-2)=0$⇔ $(x-2)(2x-7)=0$⇔\(\left[ \begin{array}{l}x=2\\x=\frac{7}{2}\end{array} \right.\) b/ $x(x-1)+2x-2=0$⇔ $x^2-x+2x-2=0$⇔ $x^2+x-2=0$⇔ $x^2+2x-x-2=0$⇔ $(x+2)(x-1)=0$⇔ \(\left[ \begin{array}{l}x=-2\\x=1\end{array} \right.\) c/ $x+x^2-x^3-x^4=0$⇔ $x(1+x)-x^3(1+x)=0$⇔ $x(x+1)(1-x^2)=0$⇔ $x(x+1)(1-x)(x+1)=0$⇔ $x(1-x)(x+1)^2=0$⇔ \(\left[ \begin{array}{l}x=0\\x=±1\end{array} \right.\) d/ $2x^3+3x^2+2x+3=0$⇔ $2x(x^2+1)+3(x^2+1)=0$⇔ $(x^2+1)(2x+3)=0$Vì $x^2+1 > 0$ nên $2x+3=0$⇔ $2x=-3$⇔ $x=-\frac{3}{2}$Chúc bạn học tốt !!! Bình luận
`a. x(2x-7)-4x+14=0` `=>2x^2-7x-4x+14=0` `=>2x^2-4x -7x+14=0` `=> 2x(x-2)-7(x-2)=0` `=>(x-2)(2x-7)=0` `=>`\(\left[ \begin{array}{l}x=2\\x=7/2\end{array} \right.\) `b. x(x-1)+2x-2=0` `=>x(x-1)+2(x-1)=0` `=>(x-1)(x+2)=0` `=>`\(\left[ \begin{array}{l}x=-2\\x=1\end{array} \right.\) `c.x+x^2-x^3-x^4=0` `=>x(x^3+x^2-x-1)=0` `=>x[x^2(x+1)-(x-1)]=0` `=>x(x+1)(x^2-1)=0` `=>`\(\left[ \begin{array}{l}x=0\\x=-1\\x^2=1\end{array} \right.\) `=>`\(\left[ \begin{array}{l}x=0\\x=-1\\x=1\end{array} \right.\) `d.2x^3+3x^2+2x+3=0` `=>x^2(2x+3)+2x+3=0` `=>(2x+3)(x^2+1)=0` `=>2x+3=0(do x^2+1\ne 0)` `=>x=\frac{-3}{2}` Bình luận
Đáp án:
Giải thích các bước giải:
a/ $x(2x-7)-4x+14=0$
⇔ $2x^2-7x-4x+14=0$
⇔ $2x^2-11x+14=0$
⇔ $2x^2-4x-7x+14=0$
⇔ $2x(x-2)-7(x-2)=0$
⇔ $(x-2)(2x-7)=0$
⇔\(\left[ \begin{array}{l}x=2\\x=\frac{7}{2}\end{array} \right.\)
b/ $x(x-1)+2x-2=0$
⇔ $x^2-x+2x-2=0$
⇔ $x^2+x-2=0$
⇔ $x^2+2x-x-2=0$
⇔ $(x+2)(x-1)=0$
⇔ \(\left[ \begin{array}{l}x=-2\\x=1\end{array} \right.\)
c/ $x+x^2-x^3-x^4=0$
⇔ $x(1+x)-x^3(1+x)=0$
⇔ $x(x+1)(1-x^2)=0$
⇔ $x(x+1)(1-x)(x+1)=0$
⇔ $x(1-x)(x+1)^2=0$
⇔ \(\left[ \begin{array}{l}x=0\\x=±1\end{array} \right.\)
d/ $2x^3+3x^2+2x+3=0$
⇔ $2x(x^2+1)+3(x^2+1)=0$
⇔ $(x^2+1)(2x+3)=0$
Vì $x^2+1 > 0$ nên $2x+3=0$
⇔ $2x=-3$
⇔ $x=-\frac{3}{2}$
Chúc bạn học tốt !!!
`a. x(2x-7)-4x+14=0`
`=>2x^2-7x-4x+14=0`
`=>2x^2-4x -7x+14=0`
`=> 2x(x-2)-7(x-2)=0`
`=>(x-2)(2x-7)=0`
`=>`\(\left[ \begin{array}{l}x=2\\x=7/2\end{array} \right.\)
`b. x(x-1)+2x-2=0`
`=>x(x-1)+2(x-1)=0`
`=>(x-1)(x+2)=0`
`=>`\(\left[ \begin{array}{l}x=-2\\x=1\end{array} \right.\)
`c.x+x^2-x^3-x^4=0`
`=>x(x^3+x^2-x-1)=0`
`=>x[x^2(x+1)-(x-1)]=0`
`=>x(x+1)(x^2-1)=0`
`=>`\(\left[ \begin{array}{l}x=0\\x=-1\\x^2=1\end{array} \right.\)
`=>`\(\left[ \begin{array}{l}x=0\\x=-1\\x=1\end{array} \right.\)
`d.2x^3+3x^2+2x+3=0`
`=>x^2(2x+3)+2x+3=0`
`=>(2x+3)(x^2+1)=0`
`=>2x+3=0(do x^2+1\ne 0)`
`=>x=\frac{-3}{2}`