Tìm x biết a) (x-3).(x+2)+(x-1).(x+5)=11 b)(3x-2).(x+1)-(x-2)-(3x+5)=32 09/07/2021 Bởi Katherine Tìm x biết a) (x-3).(x+2)+(x-1).(x+5)=11 b)(3x-2).(x+1)-(x-2)-(3x+5)=32
`a)` `(x-3).(x+2)+(x-1).(x+5)=11` `⇔x^2-x-6+x^2+4x-5=11` `⇔2x^2+3x-22=0` `⇔(x-(\sqrt(185)-3)/4)(x-(-\sqrt(185)-3)/4)=0` `⇔`\(\left[ \begin{array}{l}x=(\sqrt(185)-3)/4\\x=(-\sqrt(185)-3)/4)\end{array} \right.\) `b)` `(3x-2).(x+1)-(x-2)-(3x+5)=32` `⇔3x^2+x-2-x+2-3x-5-32=0` `⇔3x^2-3x-37=0` `⇔(x-(\sqrt(453)+3)/6)(x-(\sqrt(453)-3)/6)=0` `⇔`\(\left[ \begin{array}{l}x=(\sqrt(453)+3)/6\\x=(\sqrt(453)-3)/6)\end{array} \right.\) Bình luận
Đáp án: a) \(\left[ \begin{array}{l}x = \dfrac{{ – 3 + \sqrt {185} }}{4}\\x = \dfrac{{ – 3 – \sqrt {185} }}{4}\end{array} \right.\) b) x=12 Giải thích các bước giải: \(\begin{array}{l}a)\left( {x – 3} \right).\left( {x + 2} \right) + \left( {x – 1} \right).\left( {x + 5} \right) = 11\\ \to {x^2} – x – 6 + {x^2} + 4x – 5 = 11\\ \to 2{x^2} + 3x – 22 = 0\\ \to 2{x^2} + 2.x\sqrt 2 .\dfrac{3}{{2\sqrt 2 }} + \dfrac{9}{8} – \dfrac{{185}}{8} = 0\\ \to {\left( {x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }}} \right)^2} = \dfrac{{185}}{8}\\ \to \left[ \begin{array}{l}x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }} = \dfrac{{\sqrt {370} }}{4}\\x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }} = – \dfrac{{\sqrt {370} }}{4}\end{array} \right.\\ \to \left[ \begin{array}{l}x = \dfrac{{ – 3 + \sqrt {185} }}{4}\\x = \dfrac{{ – 3 – \sqrt {185} }}{4}\end{array} \right.\\b)\left( {3x – 2} \right).\left( {x + 1} \right) – \left( {x – 2} \right).\left( {3x + 5} \right) = 32\\ \to 3{x^2} + x – 2 – 3{x^2} + x + 10 = 32\\ \to 2x – 24 = 0\\ \to x = 12\end{array}\) ( câu b t sửa dấu “-” thành dấu nhân nhé thì hợp lý hơn ) Bình luận
`a)`
`(x-3).(x+2)+(x-1).(x+5)=11`
`⇔x^2-x-6+x^2+4x-5=11`
`⇔2x^2+3x-22=0`
`⇔(x-(\sqrt(185)-3)/4)(x-(-\sqrt(185)-3)/4)=0`
`⇔`\(\left[ \begin{array}{l}x=(\sqrt(185)-3)/4\\x=(-\sqrt(185)-3)/4)\end{array} \right.\)
`b)`
`(3x-2).(x+1)-(x-2)-(3x+5)=32`
`⇔3x^2+x-2-x+2-3x-5-32=0`
`⇔3x^2-3x-37=0`
`⇔(x-(\sqrt(453)+3)/6)(x-(\sqrt(453)-3)/6)=0`
`⇔`\(\left[ \begin{array}{l}x=(\sqrt(453)+3)/6\\x=(\sqrt(453)-3)/6)\end{array} \right.\)
Đáp án:
a) \(\left[ \begin{array}{l}
x = \dfrac{{ – 3 + \sqrt {185} }}{4}\\
x = \dfrac{{ – 3 – \sqrt {185} }}{4}
\end{array} \right.\)
b) x=12
Giải thích các bước giải:
\(\begin{array}{l}
a)\left( {x – 3} \right).\left( {x + 2} \right) + \left( {x – 1} \right).\left( {x + 5} \right) = 11\\
\to {x^2} – x – 6 + {x^2} + 4x – 5 = 11\\
\to 2{x^2} + 3x – 22 = 0\\
\to 2{x^2} + 2.x\sqrt 2 .\dfrac{3}{{2\sqrt 2 }} + \dfrac{9}{8} – \dfrac{{185}}{8} = 0\\
\to {\left( {x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }}} \right)^2} = \dfrac{{185}}{8}\\
\to \left[ \begin{array}{l}
x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }} = \dfrac{{\sqrt {370} }}{4}\\
x\sqrt 2 + \dfrac{3}{{2\sqrt 2 }} = – \dfrac{{\sqrt {370} }}{4}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = \dfrac{{ – 3 + \sqrt {185} }}{4}\\
x = \dfrac{{ – 3 – \sqrt {185} }}{4}
\end{array} \right.\\
b)\left( {3x – 2} \right).\left( {x + 1} \right) – \left( {x – 2} \right).\left( {3x + 5} \right) = 32\\
\to 3{x^2} + x – 2 – 3{x^2} + x + 10 = 32\\
\to 2x – 24 = 0\\
\to x = 12
\end{array}\)
( câu b t sửa dấu “-” thành dấu nhân nhé thì hợp lý hơn )