Tim x biêt a,3x+2 (5-x)=0 b,x (2x-1)(x+5)-(2x^+1)x+4,5)=3,5 c,(x-2)^-(x-3)(x+3)=6 d,4 (x-3)^-(2x-1)(2x+1)=10 28/07/2021 Bởi Remi Tim x biêt a,3x+2 (5-x)=0 b,x (2x-1)(x+5)-(2x^+1)x+4,5)=3,5 c,(x-2)^-(x-3)(x+3)=6 d,4 (x-3)^-(2x-1)(2x+1)=10
Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\3x + 2\left( {5 – x} \right) = 0\\ \Leftrightarrow 3x + 10 – 2x = 0\\ \Leftrightarrow x + 10 = 0\\ \Leftrightarrow x = – 10\\b,\\x\left( {2x – 1} \right)\left( {x + 5} \right) – \left( {2{x^2} + 1} \right)x + 4,5 = 3,5\\ \Leftrightarrow x\left( {2{x^2} + 9x – 5} \right) – \left( {2{x^2} + 1} \right)x – 1 = 0\\ \Leftrightarrow x\left[ {2{x^2} + 9x – 5 – 2{x^2} – 1} \right] – 1 = 0\\ \Leftrightarrow x\left( {9x – 6} \right) – 1 = 0\\ \Leftrightarrow 9{x^2} – 6x – 1 = 0\\ \Leftrightarrow x = \frac{{1 \pm \sqrt 2 }}{3}\\c,\\{\left( {x – 2} \right)^2} – \left( {x – 3} \right)\left( {x + 3} \right) = 6\\ \Leftrightarrow \left( {{x^2} – 4x + 4} \right) – \left( {{x^2} – 9} \right) = 6\\ \Leftrightarrow – 4x + 13 = 6\\ \Leftrightarrow 4x = 7\\ \Leftrightarrow x = \frac{7}{4}\\d,\\4{\left( {x – 3} \right)^2} – \left( {2x – 1} \right)\left( {2x + 1} \right) = 10\\ \Leftrightarrow 4\left( {{x^2} – 6x + 9} \right) – \left( {4{x^2} – 1} \right) = 10\\ \Leftrightarrow – 24x + 27 = 0\\ \Leftrightarrow x = \frac{{27}}{{24}} = \frac{9}{8}\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
3x + 2\left( {5 – x} \right) = 0\\
\Leftrightarrow 3x + 10 – 2x = 0\\
\Leftrightarrow x + 10 = 0\\
\Leftrightarrow x = – 10\\
b,\\
x\left( {2x – 1} \right)\left( {x + 5} \right) – \left( {2{x^2} + 1} \right)x + 4,5 = 3,5\\
\Leftrightarrow x\left( {2{x^2} + 9x – 5} \right) – \left( {2{x^2} + 1} \right)x – 1 = 0\\
\Leftrightarrow x\left[ {2{x^2} + 9x – 5 – 2{x^2} – 1} \right] – 1 = 0\\
\Leftrightarrow x\left( {9x – 6} \right) – 1 = 0\\
\Leftrightarrow 9{x^2} – 6x – 1 = 0\\
\Leftrightarrow x = \frac{{1 \pm \sqrt 2 }}{3}\\
c,\\
{\left( {x – 2} \right)^2} – \left( {x – 3} \right)\left( {x + 3} \right) = 6\\
\Leftrightarrow \left( {{x^2} – 4x + 4} \right) – \left( {{x^2} – 9} \right) = 6\\
\Leftrightarrow – 4x + 13 = 6\\
\Leftrightarrow 4x = 7\\
\Leftrightarrow x = \frac{7}{4}\\
d,\\
4{\left( {x – 3} \right)^2} – \left( {2x – 1} \right)\left( {2x + 1} \right) = 10\\
\Leftrightarrow 4\left( {{x^2} – 6x + 9} \right) – \left( {4{x^2} – 1} \right) = 10\\
\Leftrightarrow – 24x + 27 = 0\\
\Leftrightarrow x = \frac{{27}}{{24}} = \frac{9}{8}
\end{array}\)