Tìm x , biết : a, -32/(-2)^3=4 b,8/2^x-1=2 c,(1/2)^2x-1=1/8 d,x/4 / 2 = 4/ x/2 Mn giúp e zới ạ 18/07/2021 Bởi Abigail Tìm x , biết : a, -32/(-2)^3=4 b,8/2^x-1=2 c,(1/2)^2x-1=1/8 d,x/4 / 2 = 4/ x/2 Mn giúp e zới ạ
a) $\dfrac{-32}{(-2)^3}$ $=\dfrac{-32}{-8}=4=VP$ (ĐPCM) b) $(\dfrac{8}{2})^{x-1}=2$ $↔4^{x-1}=2$ $↔(2^2)^{x-1}=2$ $→2^{2x-2}=2$ $↔2x-2=1$ $↔2x=3$ $↔x=\dfrac{3}{2}$ c) $(\dfrac{1}{2})^{2x-1}=\dfrac{1}{8}$ $↔(\dfrac{1}{2})^{2x-1}=(\dfrac{1}{2})^3$ $↔2x-1=3$ $↔2x=4$ $↔x=2$ d) $\dfrac{x}{4}:2=4:\dfrac{x}{2}$ $↔\dfrac{x}{4}.\dfrac{1}{2}=4.\dfrac{2}{x}$ $↔\dfrac{x}{8}=\dfrac{8}{x}$ $↔x^2=8.8=64$ \(↔\left[ \begin{array}{l}x=\sqrt{64}=8\\x=-\sqrt{64}=-8\end{array} \right.\) Bình luận
Đáp án: Giải thích các bước giải: $a) ???$ $b) \dfrac{8}{2^{x-1}}=2$ $⇔2^{x-1}=8:2$ $⇔2^{x-1}=4$ $⇔2^{x-1}=2^2$ $⇔x-1=2 ⇔ x=3$ $c) \left (\dfrac{1}{2} \right )^{2x-1}=\dfrac{1}{8}$ $⇔\left (\dfrac{1}{2} \right )^{2x-1}=\left (\dfrac{1}{2} \right )^3$ $⇔2x-1=3$ $⇔2x=4$ $⇔x=2$ $d) \dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}$ $⇔\dfrac{x}{8}=\dfrac{8}{x}$ $⇔x.x=8.8$ $⇔x^2=64$ $⇔x=±8$ Bình luận
a) $\dfrac{-32}{(-2)^3}$
$=\dfrac{-32}{-8}=4=VP$ (ĐPCM)
b) $(\dfrac{8}{2})^{x-1}=2$
$↔4^{x-1}=2$
$↔(2^2)^{x-1}=2$
$→2^{2x-2}=2$
$↔2x-2=1$
$↔2x=3$
$↔x=\dfrac{3}{2}$
c) $(\dfrac{1}{2})^{2x-1}=\dfrac{1}{8}$
$↔(\dfrac{1}{2})^{2x-1}=(\dfrac{1}{2})^3$
$↔2x-1=3$
$↔2x=4$
$↔x=2$
d) $\dfrac{x}{4}:2=4:\dfrac{x}{2}$
$↔\dfrac{x}{4}.\dfrac{1}{2}=4.\dfrac{2}{x}$
$↔\dfrac{x}{8}=\dfrac{8}{x}$
$↔x^2=8.8=64$
\(↔\left[ \begin{array}{l}x=\sqrt{64}=8\\x=-\sqrt{64}=-8\end{array} \right.\)
Đáp án:
Giải thích các bước giải:
$a) ???$
$b) \dfrac{8}{2^{x-1}}=2$
$⇔2^{x-1}=8:2$
$⇔2^{x-1}=4$
$⇔2^{x-1}=2^2$
$⇔x-1=2 ⇔ x=3$
$c) \left (\dfrac{1}{2} \right )^{2x-1}=\dfrac{1}{8}$
$⇔\left (\dfrac{1}{2} \right )^{2x-1}=\left (\dfrac{1}{2} \right )^3$
$⇔2x-1=3$
$⇔2x=4$
$⇔x=2$
$d) \dfrac{x}{\dfrac{4}{2}}=\dfrac{4}{\dfrac{x}{2}}$
$⇔\dfrac{x}{8}=\dfrac{8}{x}$
$⇔x.x=8.8$
$⇔x^2=64$
$⇔x=±8$