tim x biet a, |9+x|=2x b, |5x|-3x=2 c, |x+6|-9=2x d,|2x-3|=x=21 17/08/2021 Bởi Hadley tim x biet a, |9+x|=2x b, |5x|-3x=2 c, |x+6|-9=2x d,|2x-3|=x=21
Đáp án: Giải thích các bước giải: |9+x|=2x ⇒9+x=-2x hay 9+x=2x ⇒x+2x=-9 hay x-2x=-9 ⇒3x=-9 hay -x=-9 ⇒x=-3 hay x=9 vậy x=-3 hay x=9 |5x|-3x=2 ⇒|5x|=2+3x ⇒5x=-2-3x hay 5x=2+3x ⇒5x+3x=-2 hay 5x-3x=2 ⇒8x=-2 hay 2x=2 ⇒x=-1/4 hay x=1 vậy x=-1/4 hay x=1 |x+6|-9=2x ⇒|x+6|=2x+9 ⇒x+6=-2x-9 hay x+6=2x+9 ⇒x+2x=-9-6 hay x-2x=9-6 ⇒3x=-15 hay -x=3 ⇒x=-5 hay x=-3 vậy x=-5 hay x=-3 ⇒x+6=2x+9 hay x+6=-2x-9 ⇒x-2x=9-6 hay x+3x=-9-6 ⇒-x=3 hay 4x=-15 ⇒x=-3 hay x=-15/4 vậy x=-3 hay x=-15/4 |2x-3|=x=21 ⇒ Bình luận
Đáp án: a, Ta có : $|9+x| = 2x <=> \(\left[ \begin{array}{l}9+x=2x\\9+x = -2x\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=9\\x=-3\end{array} \right.\) b, Ta có : $|5x| – 3x = 2$ $ <=> |5x| = 3x + 2$ <=> \(\left[ \begin{array}{l}5x=3x+2\\5x=-3x-2\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=1\\x=-1/4\end{array} \right.\) c, $|x+6| – 9 = 2x$ $=> |x+6| = 2x + 9$ <=>\(\left[ \begin{array}{l}x+6=2x+9\\x+6=-2x-9\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=-3\\x=-5\end{array} \right.\) d, $|2x-3| = x + 21$ <=> \(\left[ \begin{array}{l}2x-3=x+21\\2x-3=-x-21\end{array} \right.\) <=> \(\left[ \begin{array}{l}x=24\\x=-6\end{array} \right.\) Tổng Quát $A(x) = B(x)$ <=> \(\left[ \begin{array}{l}A(x) = B(x)\\A(x) = -B(x)\end{array} \right.\) Giải thích các bước giải: Bình luận
Đáp án:
Giải thích các bước giải:
|9+x|=2x
⇒9+x=-2x hay 9+x=2x
⇒x+2x=-9 hay x-2x=-9
⇒3x=-9 hay -x=-9
⇒x=-3 hay x=9
vậy x=-3 hay x=9
|5x|-3x=2
⇒|5x|=2+3x
⇒5x=-2-3x hay 5x=2+3x
⇒5x+3x=-2 hay 5x-3x=2
⇒8x=-2 hay 2x=2
⇒x=-1/4 hay x=1
vậy x=-1/4 hay x=1
|x+6|-9=2x
⇒|x+6|=2x+9
⇒x+6=-2x-9 hay x+6=2x+9
⇒x+2x=-9-6 hay x-2x=9-6
⇒3x=-15 hay -x=3
⇒x=-5 hay x=-3
vậy x=-5 hay x=-3
⇒x+6=2x+9 hay x+6=-2x-9
⇒x-2x=9-6 hay x+3x=-9-6
⇒-x=3 hay 4x=-15
⇒x=-3 hay x=-15/4
vậy x=-3 hay x=-15/4
|2x-3|=x=21
⇒
Đáp án:
a, Ta có :
$|9+x| = 2x
<=> \(\left[ \begin{array}{l}9+x=2x\\9+x = -2x\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=9\\x=-3\end{array} \right.\)
b, Ta có :
$|5x| – 3x = 2$
$ <=> |5x| = 3x + 2$
<=> \(\left[ \begin{array}{l}5x=3x+2\\5x=-3x-2\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=1\\x=-1/4\end{array} \right.\)
c, $|x+6| – 9 = 2x$
$=> |x+6| = 2x + 9$
<=>\(\left[ \begin{array}{l}x+6=2x+9\\x+6=-2x-9\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=-3\\x=-5\end{array} \right.\)
d, $|2x-3| = x + 21$
<=> \(\left[ \begin{array}{l}2x-3=x+21\\2x-3=-x-21\end{array} \right.\)
<=> \(\left[ \begin{array}{l}x=24\\x=-6\end{array} \right.\)
Tổng Quát
$A(x) = B(x)$
<=> \(\left[ \begin{array}{l}A(x) = B(x)\\A(x) = -B(x)\end{array} \right.\)
Giải thích các bước giải: