Tìm x, biết: |x + $\frac{1}{1.2}$| + |x + $\frac{1}{2.3}$| + |x + $\frac{1}{3.4}$| + ……..+ |x + $\frac{1}{99.100}$| = 100x 30/09/2021 Bởi Mackenzie Tìm x, biết: |x + $\frac{1}{1.2}$| + |x + $\frac{1}{2.3}$| + |x + $\frac{1}{3.4}$| + ……..+ |x + $\frac{1}{99.100}$| = 100x
Với mọi x ta luôn có: `|x+ 1/(1.2)| ≥ 0` ; `| x + 1/(2.3)| ≥ 0`; ……..; `|x+ 1/(99.100)| ≥ 0` => `|x + 1/(1.2)| + | x + 1/(2.3)|+ ……………+ |x+ 1/(99.100)| ≥ 0` => 100x ≥ 0 => x ≥ 0 Vì x ≥0 => `|x + 1/(1.2)|` = `x + 1/(1.2)` `|x + 1/(2.3)|` = `x + 1/(2.3)` ……………………………. `|x + 1/(99.100)|` = `x+ 1/(99.100)` Do đó: `|x + 1/(1.2)| + | x + 1/(2.3)|+ ……………+ |x+ 1/(99.100)| = 100x` `= x + 1/(1.2)` + `x + 1/(2.3)` +…….+ `x+ 1/(99.100)` = 100x `= x + x+ x+…..+x + 1/(1.2) + 1/(2.3) +….+ 1/(99.100)=100x` Có số số hạng x là: (99-1):1 +1 =99 số => `99x + 1/(1.2) + 1/(2.3) +….+ 1/(99.100)= 100x` =>`99x + 1/1 -1/2 + 1/2 -1/3 +….+ 1/99 -1/100) = 100x` => ` 99x + 1 -1/100 = 100x` => ` 99x + 99/100= 100x` => `99/100 = 100x -99x` => `99/100 = x` Vậy `x = 99/100` Bình luận
Đáp án: `|x+1/(1.2)|+|x+1/(2.3)|+…+|x+1/(99.100)|=100x“(1)` `VT` `|x+1/(1.2)|>=0 ∀x ; |x+1/(2.3)|>=0 ∀x ; …. ; |x+1/(99.100)|>=0 ∀x` `=> VT>=0 ∀x` `=> VP=100x>=0 ∀x` `=> x>=0` `(1) => x+1/(1.2)+x+1/(2.3)+…+x+1/(99.100)=100x` `=> 99x+1/(1.2)+1/(2.3)+…+1/(99.100)=100x` `=> 99x+1/1-1/2+1/2-1/3+…+1/99-1/100=100x` `=> 1/1-1/100=100x-99x` `=> x=99/100` Bình luận
Với mọi x ta luôn có: `|x+ 1/(1.2)| ≥ 0` ; `| x + 1/(2.3)| ≥ 0`; ……..; `|x+ 1/(99.100)| ≥ 0`
=> `|x + 1/(1.2)| + | x + 1/(2.3)|+ ……………+ |x+ 1/(99.100)| ≥ 0`
=> 100x ≥ 0
=> x ≥ 0
Vì x ≥0
=> `|x + 1/(1.2)|` = `x + 1/(1.2)`
`|x + 1/(2.3)|` = `x + 1/(2.3)`
…………………………….
`|x + 1/(99.100)|` = `x+ 1/(99.100)`
Do đó: `|x + 1/(1.2)| + | x + 1/(2.3)|+ ……………+ |x+ 1/(99.100)| = 100x`
`= x + 1/(1.2)` + `x + 1/(2.3)` +…….+ `x+ 1/(99.100)` = 100x
`= x + x+ x+…..+x + 1/(1.2) + 1/(2.3) +….+ 1/(99.100)=100x`
Có số số hạng x là:
(99-1):1 +1 =99 số
=> `99x + 1/(1.2) + 1/(2.3) +….+ 1/(99.100)= 100x`
=>`99x + 1/1 -1/2 + 1/2 -1/3 +….+ 1/99 -1/100) = 100x`
=> ` 99x + 1 -1/100 = 100x`
=> ` 99x + 99/100= 100x`
=> `99/100 = 100x -99x`
=> `99/100 = x`
Vậy `x = 99/100`
Đáp án:
`|x+1/(1.2)|+|x+1/(2.3)|+…+|x+1/(99.100)|=100x“(1)`
`VT` `|x+1/(1.2)|>=0 ∀x ; |x+1/(2.3)|>=0 ∀x ; …. ; |x+1/(99.100)|>=0 ∀x`
`=> VT>=0 ∀x`
`=> VP=100x>=0 ∀x`
`=> x>=0`
`(1) => x+1/(1.2)+x+1/(2.3)+…+x+1/(99.100)=100x`
`=> 99x+1/(1.2)+1/(2.3)+…+1/(99.100)=100x`
`=> 99x+1/1-1/2+1/2-1/3+…+1/99-1/100=100x`
`=> 1/1-1/100=100x-99x`
`=> x=99/100`