Tìm x biết ( ($\frac{1}{2}$x-5)^20+($y^{2}$ -$\frac{1}{4}$)^10 ≤0 21/09/2021 Bởi Adalyn Tìm x biết ( ($\frac{1}{2}$x-5)^20+($y^{2}$ -$\frac{1}{4}$)^10 ≤0
Đáp án: Giải thích các bước giải: $(\dfrac{1}{2}x-5)^{20} \geq 0 \quad \forall x\\ (y^{2}-\dfrac{1}{4})^{10}\geq 0 \quad \forall y\\ \rightarrow (\dfrac{1}{2}x-5)^{20}+(y^{2}-\dfrac{1}{4})^{10} \quad \geq 0 \quad \forall x, y\\ \rightarrow (\dfrac{1}{2}x-5)^{20}+(y^{2}-\dfrac{1}{4})^{10} \quad= 0 \\ \text{Dấu = xảy ra khi: }\\ \dfrac{1}{2}x-5=0 \rightarrow x=10\\ y^{2}-\dfrac{1}{4}=0\rightarrow y=\dfrac{1}{2} \quad || \quad y=\dfrac{-1}{2}$ Bình luận
Đáp án:
Giải thích các bước giải:
$(\dfrac{1}{2}x-5)^{20} \geq 0 \quad \forall x\\
(y^{2}-\dfrac{1}{4})^{10}\geq 0 \quad \forall y\\
\rightarrow (\dfrac{1}{2}x-5)^{20}+(y^{2}-\dfrac{1}{4})^{10} \quad \geq 0 \quad \forall x, y\\
\rightarrow (\dfrac{1}{2}x-5)^{20}+(y^{2}-\dfrac{1}{4})^{10} \quad= 0 \\
\text{Dấu = xảy ra khi: }\\
\dfrac{1}{2}x-5=0 \rightarrow x=10\\
y^{2}-\dfrac{1}{4}=0\rightarrow y=\dfrac{1}{2} \quad || \quad y=\dfrac{-1}{2}$