Tìm x biết: $\frac{2x-1}{7}$ = $\frac{9}{2x-1}$ 09/07/2021 Bởi Athena Tìm x biết: $\frac{2x-1}{7}$ = $\frac{9}{2x-1}$
Đáp án: $x$ $∈$ `{\frac{\sqrt{63}+1}{2};\frac{-\sqrt{63}+1}{2}}`. Giải thích các bước giải: `{2x-1}/7 = 9/{2x-1}` `⇔ (2x-1).(2x-1) = 7.9` `⇔ (2x-1)^2 = 63` `⇔ 2x-1 = ±\sqrt{63}` `⇒` \(\left[ \begin{array}{l}2x=\sqrt{63}+1\\2x=-\sqrt{63}+1\end{array} \right.\) $⇒$ \(\left[ \begin{array}{l}x=\dfrac{\sqrt{63}+1}{2}\\x=\dfrac{-\sqrt{63}+1}{2}\end{array} \right.\) Vậy $x$ $∈$ `{\frac{\sqrt{63}+1}{2};\frac{-\sqrt{63}+1}{2}}`. Bình luận
Đáp án: Giải thích các bước giải: `(2x-1)/7=9/(2x-1)` `=>(2x-1)^2=7.9=63` `=>2x-1=+-sqrt{63}` `=>x=(+-sqrt{63}+1)/2` Bình luận
Đáp án: $x$ $∈$ `{\frac{\sqrt{63}+1}{2};\frac{-\sqrt{63}+1}{2}}`.
Giải thích các bước giải:
`{2x-1}/7 = 9/{2x-1}`
`⇔ (2x-1).(2x-1) = 7.9`
`⇔ (2x-1)^2 = 63`
`⇔ 2x-1 = ±\sqrt{63}`
`⇒` \(\left[ \begin{array}{l}2x=\sqrt{63}+1\\2x=-\sqrt{63}+1\end{array} \right.\)
$⇒$ \(\left[ \begin{array}{l}x=\dfrac{\sqrt{63}+1}{2}\\x=\dfrac{-\sqrt{63}+1}{2}\end{array} \right.\)
Vậy $x$ $∈$ `{\frac{\sqrt{63}+1}{2};\frac{-\sqrt{63}+1}{2}}`.
Đáp án:
Giải thích các bước giải:
`(2x-1)/7=9/(2x-1)`
`=>(2x-1)^2=7.9=63`
`=>2x-1=+-sqrt{63}`
`=>x=(+-sqrt{63}+1)/2`