Tìm x , bt :
a,7-x=16
b,2x-8=-16+4x
c,(x-2)-3=4-(2x+7)
d,2x-(3x+4)=16-(x+3)
e,|x|=4
f,|x|=(-5)
g,|x-3|=2x-6
h,|2x-4|=4x-6
i,2.|x-3|+4=6
j,27-3.|2x-4|=3
k,|2x+4|= x – 4
Tìm x , bt :
a,7-x=16
b,2x-8=-16+4x
c,(x-2)-3=4-(2x+7)
d,2x-(3x+4)=16-(x+3)
e,|x|=4
f,|x|=(-5)
g,|x-3|=2x-6
h,|2x-4|=4x-6
i,2.|x-3|+4=6
j,27-3.|2x-4|=3
k,|2x+4|= x – 4
Đáp án:
a) x=-9
Giải thích các bước giải:
\(\begin{array}{l}
a)x = 7 – 16\\
\to x = – 9\\
b)2x – 8 = – 16 + 4x\\
\to 2x = 8\\
\to x = 4\\
c)x – 2 – 3 = 4 – 2x – 7\\
\to 3x = 2\\
\to x = \dfrac{2}{3}\\
d)2x – 3x – 4 = 16 – x – 3\\
\to 2x = 17\\
\to x = \dfrac{{17}}{2}\\
e)\left| x \right| = 4\\
\to \left[ \begin{array}{l}
x = 4\\
x = – 4
\end{array} \right.\\
f)\left| x \right| = – 5\left( l \right)\\
Do:x \ge 0\forall x\\
\to x \in \emptyset \\
g)\left| {x – 3} \right| = 2x – 6\\
\to \left[ \begin{array}{l}
x – 3 = 2x – 6\left( {DK:x \ge 3} \right)\\
x – 3 = – 2x + 6\left( {DK:x < 3} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 3\\
3x = 9
\end{array} \right.\\
\to x = 3\\
h)\left| {2x – 4} \right| = 4x – 6\\
\to \left[ \begin{array}{l}
2x – 4 = 4x – 6\left( {DK:x \ge 2} \right)\\
2x – 4 = – 4x + 6\left( {DK:x < 2} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
2x = 2\\
6x = 10
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 1\left( l \right)\\
x = \dfrac{5}{3}\left( {TM} \right)
\end{array} \right.\\
i)2\left| {x – 3} \right| = 2\\
\to \left| {x – 3} \right| = 1\\
\to \left[ \begin{array}{l}
x – 3 = 1\\
x – 3 = – 1
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 4\\
x = 2
\end{array} \right.\\
j)3\left| {2x – 4} \right| = 24\\
\to \left| {2x – 4} \right| = 8\\
\to \left[ \begin{array}{l}
2x – 4 = 8\\
2x – 4 = – 8
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 6\\
x = – 2
\end{array} \right.\\
k)\left| {2x + 4} \right| = x – 4\\
\to \left[ \begin{array}{l}
2x + 4 = x – 4\left( {DK:x \ge – 2} \right)\\
2x + 4 = – x + 4\left( {DK:x < – 2} \right)
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = – 8\left( l \right)\\
3x = 0
\end{array} \right.\\
\to x = 0\left( l \right)
\end{array}\)
⇒ Phương trình vô nghiệm