Tìm các công thức 1 _____= n(n+1) k ______= n(n+1) 1 ______= n(n+k) k ______= n(n+k) 1 ______= 2n(2n+2) 1 ______= (2n+1)(2n+2)

Tìm các công thức
1
_____=
n(n+1)
k
______=
n(n+1)
1
______=
n(n+k)
k
______=
n(n+k)
1
______=
2n(2n+2)
1
______=
(2n+1)(2n+2)
Dựa vào công thức làm các bài sau:
A= 1 1 1 1
____+ ____+______+…….+______
1.2 2.3 3.4 49.50
B= 2 2 2 2
____+ ____+______+…….+______
3.5 5.7 7.9 37.39
C= 3 3 3 3
____+ ____+______+…….+______
4.7 7.10 10.13 73.76

0 bình luận về “Tìm các công thức 1 _____= n(n+1) k ______= n(n+1) 1 ______= n(n+k) k ______= n(n+k) 1 ______= 2n(2n+2) 1 ______= (2n+1)(2n+2)”

  1. $\frac{1}{n.(n+1)}$=$\frac{1}{n}$-$\frac{1}{n+1}$

    $\frac{k}{n.(n+1)}$=k.( $\frac{1}{n}$-$\frac{1}{n+1}$)

    $\frac{1}{n.(n+k)}$=$\frac{1}{k}$.( $\frac{1}{n}$-$\frac{1}{n+k}$)

    $\frac{k}{n.(n+k)}$=$\frac{1}{n}$-$\frac{1}{n+k}$

    $\frac{1}{2n.(2n+2)}$=$\frac{1}{4}$.( $\frac{1}{n}$-$\frac{1}{n+1}$)

    $\frac{1}{(2n+1).(2n+2)}$=$\frac{1}{2n+1}$-$\frac{1}{2n+2}$

    Vận dụng

    A= $\frac{1}{1.2}$+ $\frac{1}{2.3}$+…+ $\frac{1}{49.50}$

    = 1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+…+$\frac{1}{49}$-$\frac{1}{50}$

    = 1-$\frac{1}{50}$

    = $\frac{49}{50}$

    B= $\frac{2}{3.5}$+$\frac{2}{5.7}$+…+$\frac{2}{37.39}$

    = $\frac{1}{3}$-$\frac{1}{5}$+$\frac{1}{5}$-$\frac{1}{7}$+…+$\frac{1}{37}$-$\frac{1}{39}$

    = $\frac{1}{3}$-$\frac{1}{39}$

    = $\frac{4}{13}$

    C= $\frac{3}{4.7}$+$\frac{3}{7.10}$+…+$\frac{3}{73.76}$

    = $\frac{1}{4}$-$\frac{1}{7}$+$\frac{1}{7}$-$\frac{1}{10}$+…+$\frac{1}{73}$-$\frac{1}{76}$

    = $\frac{1}{4}$-$\frac{1}{76}$

    = $\frac{9}{38}$

    Bình luận

Viết một bình luận