Tìm các giá trị nguyên của x để P= 3x/x+1 có giá trị nguyên

Tìm các giá trị nguyên của x để P= 3x/x+1 có giá trị nguyên

0 bình luận về “Tìm các giá trị nguyên của x để P= 3x/x+1 có giá trị nguyên”

  1. Giải thích các bước giải:

    Để P nguyên => 3x chia hết cho x+1

                           => 3x+3-3 chia hết cho x+1

                           => 3 chia hết cho x+1

     => x+1 thuộc {1;-1;3;-3}
    => x thuộc {0;-2;2;-4}
           Chúc bạn học thật là giỏi nha !! 

    Bình luận
  2. Để $P=\dfrac{3x}{x+1}$ có giá trị nguyên thì:

    $⇔ 3x \quad\vdots\quad x+1$

    $⇔ 3x-3+3 \quad\vdots\quad x+1$

    $⇔ 3 \quad\vdots\quad x+1$

    $⇔ x+1 \in ±3 = \{±1;±3\}$

    Ta có bảng sau:

    \begin{array}{c|c}x+1&1&-1&3&-3\\\hline x&0&-2&2&-4\end{array}

    Vậy $x\in\{0;-2;2;-4\}$

     

    Bình luận

Viết một bình luận