Tìm các giới hạn
a, lim [(3x^2 – 2x – 1) / (x^3 – 1)]
x–>1
b, lim [{căn(1+2x)} – {căn3 (1+3x)}] / [x^2]
x–>0
c, lim (x+3) / (x-3)
x–>3-
Tìm các giới hạn
a, lim [(3x^2 – 2x – 1) / (x^3 – 1)]
x–>1
b, lim [{căn(1+2x)} – {căn3 (1+3x)}] / [x^2]
x–>0
c, lim (x+3) / (x-3)
x–>3-
a,
$\lim\limits_{x\to 1}\dfrac{3x^2-2x-1}{x^3-1}$
$=\lim\limits_{x\to 1}\dfrac{(x-1)(3x+1)}{(x-1)(x^2+x+1)}$
$=\lim\limits_{x\to 1}\dfrac{3x+1}{x^2+x+1}$
$=\dfrac{3.1+1}{1^2+1+1}=\dfrac{4}{3}$
b,
$\lim\limits_{x\to 0}\dfrac{\sqrt{1+2x}-(x+1)+(x+1)-\sqrt[3]{1+3x}}{x^2}$
$=\lim\limits_{x\to 0}\dfrac{ \dfrac{1+2x-x^2-2x-1}{ \sqrt{1+2x}+x+1}+\dfrac{x^3+3x^2+3x+1-1-3x}{(x+1)^2+(x+1)\sqrt[3]{1+3x}+\sqrt[3]{1+3x}^2} }{x^2}$
$=\lim\limits_{x\to 0}\dfrac{-1}{\sqrt{1+2x}+x+1}+\dfrac{x+3}{(x+1)^2+(x+1)\sqrt[3]{1+3x}+\sqrt[3]{1+3x}^2}$
$=\dfrac{-1}{1+1}+\dfrac{0+3}{1+1.1+1}$
$=\dfrac{1}{2}$
c,
$\lim\limits_{x\to 3^-}(x+3)=3+3=6>0$
$\lim\limits_{x\to 3^-}(x-3)=0$
$\Rightarrow\lim\limits_{x\to 3^-}\dfrac{x+3}{x-3}=-\infty$