Tìm các số nguyên x, y biết: $x^{2}$ + $2x$ – $8y^{2}$ = 41

Tìm các số nguyên x, y biết: $x^{2}$ + $2x$ – $8y^{2}$ = 41

0 bình luận về “Tìm các số nguyên x, y biết: $x^{2}$ + $2x$ – $8y^{2}$ = 41”

  1. $\text{Đáp án+Giải thích các bước giải:}$

    $\text{x²+2x-8y²=41 ⇔ x²+2x+1-8y²=42}$

    $\text{⇔ (x+1)²-8y²=42}$

    $\text{Thấy 42⁝2,8y²⁝2}$

    $\text{⇒ (x+1)²⁝2 ⇒ x không chia hết cho 2}$

    $\text{⇒ x có dạng 2k+1}$

    $\text{⇔ (2k+2)²-8y²=42}$

    $\text{⇔ 2(k+1)²-4y²=21}$

    $\text{Thấy 21 không chia hết cho 2 mà 2(k+1)² và 4y²⁝2}$

    $\text{⇒ Phương trình vô No}$

     

    Bình luận

Viết một bình luận