tim cac so nguyen x;y sao cho:a (x+2)(y-1)=3 b (3-x)(xy+5)=-1 AI TRA LOI DUNG VA NHANH NHAT MINH TICK CHO 12/07/2021 Bởi Rose tim cac so nguyen x;y sao cho:a (x+2)(y-1)=3 b (3-x)(xy+5)=-1 AI TRA LOI DUNG VA NHANH NHAT MINH TICK CHO
Đáp án: \[\begin{array}{l}a,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x;y} \right) \in \left\{ {\left( { – 1;4} \right);\left( { – 3; – 2} \right);\left( {1;2} \right);\left( { – 5;0} \right)} \right\}\\b,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x;y} \right) \in \left\{ {\left( {2; – 3} \right);\left( {4; – 1} \right)} \right\}\end{array}\] Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\\left( {x + 2} \right)\left( {y – 1} \right) = 3\\x,y \in Z \Rightarrow \left( {x + 2} \right);\left( {y – 1} \right) \in Z\\3 = 1.3 = \left( { – 1} \right).\left( { – 3} \right)\\ \Rightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x + 2 = 1\\y – 1 = 3\end{array} \right.\\\left\{ \begin{array}{l}x + 2 = – 1\\y – 1 = – 3\end{array} \right.\\\left\{ \begin{array}{l}x + 2 = 3\\y – 1 = 1\end{array} \right.\\\left\{ \begin{array}{l}x + 2 = – 3\\y – 1 = – 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = – 1\\y = 4\end{array} \right.\\\left\{ \begin{array}{l}x = – 3\\y = – 2\end{array} \right.\\\left\{ \begin{array}{l}x = 1\\y = 2\end{array} \right.\\\left\{ \begin{array}{l}x = – 5\\y = 0\end{array} \right.\end{array} \right.\\ \Rightarrow \left( {x;y} \right) \in \left\{ {\left( { – 1;4} \right);\left( { – 3; – 2} \right);\left( {1;2} \right);\left( { – 5;0} \right)} \right\}\\b,\\\left( {3 – x} \right)\left( {xy + 5} \right) = – 1\\x;y \in Z \Rightarrow \left( {3 – x} \right);\left( {xy + 5} \right) \in Z\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}3 – x = 1\\xy + 5 = – 1\end{array} \right.\\\left\{ \begin{array}{l}3 – x = – 1\\xy + 5 = 1\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2\\xy = – 6\end{array} \right.\\\left\{ \begin{array}{l}x = 4\\xy = – 4\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x = 2\\y = – 3\end{array} \right.\\\left\{ \begin{array}{l}x = 4\\y = – 1\end{array} \right.\end{array} \right.\\ \Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2; – 3} \right);\left( {4; – 1} \right)} \right\}\end{array}\) Bình luận
Đáp án:
\[\begin{array}{l}
a,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x;y} \right) \in \left\{ {\left( { – 1;4} \right);\left( { – 3; – 2} \right);\left( {1;2} \right);\left( { – 5;0} \right)} \right\}\\
b,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {x;y} \right) \in \left\{ {\left( {2; – 3} \right);\left( {4; – 1} \right)} \right\}
\end{array}\]
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\left( {x + 2} \right)\left( {y – 1} \right) = 3\\
x,y \in Z \Rightarrow \left( {x + 2} \right);\left( {y – 1} \right) \in Z\\
3 = 1.3 = \left( { – 1} \right).\left( { – 3} \right)\\
\Rightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x + 2 = 1\\
y – 1 = 3
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 2 = – 1\\
y – 1 = – 3
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 2 = 3\\
y – 1 = 1
\end{array} \right.\\
\left\{ \begin{array}{l}
x + 2 = – 3\\
y – 1 = – 1
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = – 1\\
y = 4
\end{array} \right.\\
\left\{ \begin{array}{l}
x = – 3\\
y = – 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 1\\
y = 2
\end{array} \right.\\
\left\{ \begin{array}{l}
x = – 5\\
y = 0
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left( {x;y} \right) \in \left\{ {\left( { – 1;4} \right);\left( { – 3; – 2} \right);\left( {1;2} \right);\left( { – 5;0} \right)} \right\}\\
b,\\
\left( {3 – x} \right)\left( {xy + 5} \right) = – 1\\
x;y \in Z \Rightarrow \left( {3 – x} \right);\left( {xy + 5} \right) \in Z\\
\Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
3 – x = 1\\
xy + 5 = – 1
\end{array} \right.\\
\left\{ \begin{array}{l}
3 – x = – 1\\
xy + 5 = 1
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 2\\
xy = – 6
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 4\\
xy = – 4
\end{array} \right.
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
\left\{ \begin{array}{l}
x = 2\\
y = – 3
\end{array} \right.\\
\left\{ \begin{array}{l}
x = 4\\
y = – 1
\end{array} \right.
\end{array} \right.\\
\Rightarrow \left( {x;y} \right) \in \left\{ {\left( {2; – 3} \right);\left( {4; – 1} \right)} \right\}
\end{array}\)