tìm các số tự nhiên n để các phân số sau có giá trị nguyên: a, n+3/2n-2 b, 12/3n-1 c, 2n+3/7 d, 8n+193/4n+3 21/11/2021 Bởi Everleigh tìm các số tự nhiên n để các phân số sau có giá trị nguyên: a, n+3/2n-2 b, 12/3n-1 c, 2n+3/7 d, 8n+193/4n+3
Đáp án: c. \(n = 2 + 7k\) thì \(\frac{{2n + 3}}{7}\) nguyên Giải thích các bước giải: \(\begin{array}{l}a.A \in Z\\ \to n + 3 \vdots 2n – 2\\ \to 2n + 6 \vdots 2n – 2\\ \to 2n – 2 + 8 \vdots 2n – 2\\ \to 8 \vdots 2n – 2\\ \to 4 \vdots n – 1\\ \to 2n – 2 \in U\left( 8 \right)\\ \to \left[ \begin{array}{l}2n – 2 = 8\\2n – 2 = – 8\\2n – 2 = 4\\2n – 2 = – 4\\2n – 2 = 2\\2n – 2 = – 2\\2n – 2 = 1\\2n – 2 = – 1\end{array} \right. \to \left[ \begin{array}{l}n = 5\\n = – 3\\n = 3\\n = – 1\\n = 2\\n = 0\\n = \frac{3}{2}\left( l \right)\\n = \frac{1}{2}\left( l \right)\end{array} \right.\\b.12 \vdots 3n – 1\\ \to 3n – 1 \in U\left( {12} \right)\\ \to \left[ \begin{array}{l}3n – 1 = 12\\3n – 1 = – 12\\3n – 1 = 6\\3n – 1 = – 6\\3n – 1 = 4\\3n – 1 = – 4\\3n – 1 = 3\\3n – 1 = – 3\\3n – 1 = 2\\3n – 1 = – 2\\3n – 1 = 1\\3n – 1 = – 1\end{array} \right. \to \left[ \begin{array}{l}n = \frac{{13}}{3}\left( l \right)\\n = – \frac{{11}}{3}\left( l \right)\\n = \frac{7}{3}\left( l \right)\\n = – \frac{5}{3}\left( l \right)\\n = \frac{5}{3}\left( l \right)\\n = – 1\left( {TM} \right)\\n = \frac{4}{3}\left( l \right)\\n = – \frac{2}{3}\left( l \right)\\n = 1\left( {TM} \right)\\n = – \frac{1}{3}\left( l \right)\\n = \frac{2}{3}\left( l \right)\\n = 0\left( {TM} \right)\end{array} \right.\\c.2n + 3 \vdots 7\\ \to \left( {2n + 3 – 7} \right) \vdots 7\\ \to 2n – 4 \vdots 7\\ \to 2\left( {n – 2} \right) \vdots 7\\Mà:\left( {2;7} \right) = 1\\ \to \left( {n – 2} \right) \vdots 7\\ \to n – 2 = 7k\left( {k \in Z} \right)\\ \to n = 2 + 7k\end{array}\) Vậy với \(n = 2 + 7k\) thì \(\frac{{2n + 3}}{7}\) nguyên \(\begin{array}{l}d.D = \frac{{8n + 193}}{{4n + 3}} = \frac{{2\left( {4n + 3} \right) + 187}}{{4n + 3}} = 2 + \frac{{187}}{{4n + 3}}\\D \in Z\\ \Leftrightarrow \frac{{187}}{{4n + 3}} \in Z\\ \to 4n + 3 \in U\left( {187} \right)\\ \to \left[ \begin{array}{l}4n + 3 = 187\\4n + 3 = – 187\\4n + 3 = 17\\4n + 3 = – 17\\4n + 3 = 11\\4n + 3 = – 11\\4n + 3 = 1\\4n + 3 = – 1\end{array} \right. \to \left[ \begin{array}{l}n = 46\\n = – \frac{{95}}{2}\left( l \right)\\n = 5\\n = – \frac{{14}}{4}\left( l \right)\\n = – \frac{1}{2}\left( l \right)\\n = – 1\end{array} \right.\end{array}\) Bình luận
Đáp án:
c. \(n = 2 + 7k\) thì \(\frac{{2n + 3}}{7}\) nguyên
Giải thích các bước giải:
\(\begin{array}{l}
a.A \in Z\\
\to n + 3 \vdots 2n – 2\\
\to 2n + 6 \vdots 2n – 2\\
\to 2n – 2 + 8 \vdots 2n – 2\\
\to 8 \vdots 2n – 2\\
\to 4 \vdots n – 1\\
\to 2n – 2 \in U\left( 8 \right)\\
\to \left[ \begin{array}{l}
2n – 2 = 8\\
2n – 2 = – 8\\
2n – 2 = 4\\
2n – 2 = – 4\\
2n – 2 = 2\\
2n – 2 = – 2\\
2n – 2 = 1\\
2n – 2 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
n = 5\\
n = – 3\\
n = 3\\
n = – 1\\
n = 2\\
n = 0\\
n = \frac{3}{2}\left( l \right)\\
n = \frac{1}{2}\left( l \right)
\end{array} \right.\\
b.12 \vdots 3n – 1\\
\to 3n – 1 \in U\left( {12} \right)\\
\to \left[ \begin{array}{l}
3n – 1 = 12\\
3n – 1 = – 12\\
3n – 1 = 6\\
3n – 1 = – 6\\
3n – 1 = 4\\
3n – 1 = – 4\\
3n – 1 = 3\\
3n – 1 = – 3\\
3n – 1 = 2\\
3n – 1 = – 2\\
3n – 1 = 1\\
3n – 1 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
n = \frac{{13}}{3}\left( l \right)\\
n = – \frac{{11}}{3}\left( l \right)\\
n = \frac{7}{3}\left( l \right)\\
n = – \frac{5}{3}\left( l \right)\\
n = \frac{5}{3}\left( l \right)\\
n = – 1\left( {TM} \right)\\
n = \frac{4}{3}\left( l \right)\\
n = – \frac{2}{3}\left( l \right)\\
n = 1\left( {TM} \right)\\
n = – \frac{1}{3}\left( l \right)\\
n = \frac{2}{3}\left( l \right)\\
n = 0\left( {TM} \right)
\end{array} \right.\\
c.2n + 3 \vdots 7\\
\to \left( {2n + 3 – 7} \right) \vdots 7\\
\to 2n – 4 \vdots 7\\
\to 2\left( {n – 2} \right) \vdots 7\\
Mà:\left( {2;7} \right) = 1\\
\to \left( {n – 2} \right) \vdots 7\\
\to n – 2 = 7k\left( {k \in Z} \right)\\
\to n = 2 + 7k
\end{array}\)
Vậy với \(n = 2 + 7k\) thì \(\frac{{2n + 3}}{7}\) nguyên
\(\begin{array}{l}
d.D = \frac{{8n + 193}}{{4n + 3}} = \frac{{2\left( {4n + 3} \right) + 187}}{{4n + 3}} = 2 + \frac{{187}}{{4n + 3}}\\
D \in Z\\
\Leftrightarrow \frac{{187}}{{4n + 3}} \in Z\\
\to 4n + 3 \in U\left( {187} \right)\\
\to \left[ \begin{array}{l}
4n + 3 = 187\\
4n + 3 = – 187\\
4n + 3 = 17\\
4n + 3 = – 17\\
4n + 3 = 11\\
4n + 3 = – 11\\
4n + 3 = 1\\
4n + 3 = – 1
\end{array} \right. \to \left[ \begin{array}{l}
n = 46\\
n = – \frac{{95}}{2}\left( l \right)\\
n = 5\\
n = – \frac{{14}}{4}\left( l \right)\\
n = – \frac{1}{2}\left( l \right)\\
n = – 1
\end{array} \right.
\end{array}\)