Tìm x: d) |2x-1|+|1-3x|= 2x+1 e) |x+1|- |2x+3| = (-x) + 2 16/09/2021 Bởi Camila Tìm x: d) |2x-1|+|1-3x|= 2x+1 e) |x+1|- |2x+3| = (-x) + 2
Đáp án: $\begin{array}{l}d)\left| {2x – 1} \right| + \left| {1 – 3x} \right| = 2x + 1\\ \Rightarrow \left| {2x – 1} \right| + \left| {3x – 1} \right| = 2x + 1\\ + Khi:x \ge \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}\left| {2x – 1} \right| = 2x – 1\\\left| {3x – 1} \right| = 3x – 1\end{array} \right.\\ \Rightarrow 2x – 1 + 3x – 1 = 2x + 1\\ \Rightarrow 3x = 3\\ \Rightarrow x = 1\left( {tmdk} \right)\\ + Khi:\dfrac{1}{3} \le x < \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}\left| {2x – 1} \right| = 1 – 2x\\\left| {3x – 1} \right| = 3x – 1\end{array} \right.\\ \Rightarrow 1 – 2x + 3x – 1 = 2x + 1\\ \Rightarrow x = – 1\left( {ktm} \right)\\ + Khi:x < \dfrac{1}{3}\\ \Rightarrow 1 – 2x + 1 – 3x = 2x + 1\\ \Rightarrow x = \dfrac{1}{7}\left( {tm} \right)\\Vậy\,x = 1\,hoặc:x = \dfrac{1}{7}\\e)\left| {x + 1} \right| – \left| {2x + 3} \right| = – x + 2\\ + Khi:x \ge – 1 \Rightarrow \left\{ \begin{array}{l}\left| {x + 1} \right| = x + 1\\\left| {2x + 3} \right| = 2x + 3\end{array} \right.\\ \Rightarrow x + 1 – 2x – 3 = – x + 2\\ \Rightarrow – 2 = 2\left( {vo\,nghiem} \right)\\ + Khi: – \dfrac{3}{2} \le x < – 1\\ \Rightarrow – x – 1 – 2x – 3 = – x + 2\\ \Rightarrow x = – 3\left( {ktm} \right)\\ + Khi:x < – \dfrac{3}{2}\\ \Rightarrow – x – 1 – \left( { – 2x – 3} \right) = – x + 2\\ \Rightarrow – x – 1 + 2x + 3 = – x + 2\\ \Rightarrow 2x = 0\\ \Rightarrow x = 0\left( {ktm} \right)\end{array}$ Vậy phương trình vô nghiệm Bình luận
Đáp án:
$\begin{array}{l}
d)\left| {2x – 1} \right| + \left| {1 – 3x} \right| = 2x + 1\\
\Rightarrow \left| {2x – 1} \right| + \left| {3x – 1} \right| = 2x + 1\\
+ Khi:x \ge \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}
\left| {2x – 1} \right| = 2x – 1\\
\left| {3x – 1} \right| = 3x – 1
\end{array} \right.\\
\Rightarrow 2x – 1 + 3x – 1 = 2x + 1\\
\Rightarrow 3x = 3\\
\Rightarrow x = 1\left( {tmdk} \right)\\
+ Khi:\dfrac{1}{3} \le x < \dfrac{1}{2} \Rightarrow \left\{ \begin{array}{l}
\left| {2x – 1} \right| = 1 – 2x\\
\left| {3x – 1} \right| = 3x – 1
\end{array} \right.\\
\Rightarrow 1 – 2x + 3x – 1 = 2x + 1\\
\Rightarrow x = – 1\left( {ktm} \right)\\
+ Khi:x < \dfrac{1}{3}\\
\Rightarrow 1 – 2x + 1 – 3x = 2x + 1\\
\Rightarrow x = \dfrac{1}{7}\left( {tm} \right)\\
Vậy\,x = 1\,hoặc:x = \dfrac{1}{7}\\
e)\left| {x + 1} \right| – \left| {2x + 3} \right| = – x + 2\\
+ Khi:x \ge – 1 \Rightarrow \left\{ \begin{array}{l}
\left| {x + 1} \right| = x + 1\\
\left| {2x + 3} \right| = 2x + 3
\end{array} \right.\\
\Rightarrow x + 1 – 2x – 3 = – x + 2\\
\Rightarrow – 2 = 2\left( {vo\,nghiem} \right)\\
+ Khi: – \dfrac{3}{2} \le x < – 1\\
\Rightarrow – x – 1 – 2x – 3 = – x + 2\\
\Rightarrow x = – 3\left( {ktm} \right)\\
+ Khi:x < – \dfrac{3}{2}\\
\Rightarrow – x – 1 – \left( { – 2x – 3} \right) = – x + 2\\
\Rightarrow – x – 1 + 2x + 3 = – x + 2\\
\Rightarrow 2x = 0\\
\Rightarrow x = 0\left( {ktm} \right)
\end{array}$
Vậy phương trình vô nghiệm