Tìm đạo hàm : a. y= tan ( x+1) + cot ( 1-x) b. y= cos ²x + cos ²2x + cos ²3x

Tìm đạo hàm :
a. y= tan ( x+1) + cot ( 1-x)
b. y= cos ²x + cos ²2x + cos
²3x

0 bình luận về “Tìm đạo hàm : a. y= tan ( x+1) + cot ( 1-x) b. y= cos ²x + cos ²2x + cos ²3x”

  1. a) Ta có

    $y’ = [\tan(x+1) + cot(1-x)]’$

    $= \dfrac{1}{\cos^2(x+1)}  – \dfrac{-1}{\sin^2(1-x)}$

    $= \dfrac{1}{\cos^2(x+1)}  + \dfrac{1}{\sin^2(1-x)}$

    Vậy

    $y’ = \dfrac{1}{\cos^2(x+1)}  + \dfrac{1}{\sin^2(1-x)}$

    b) Ta có

    $y’ = 2\cos x (-\sin x) + 2\cos(2x) [-2\sin(2x)] + 2\cos(3x) [-3 \sin(3x)]$

    $= -2\sin x \cos x – 4\sin(2x) \cos(2x) – 6 \sin(3x) \cos(3x)$

    $= -\sin(2x) – 2\sin(4x) – 3 \sin(6x)$

    Vậy

    $y’= -\sin(2x) – 2\sin(4x) – 3 \sin(6x)$.

    Bình luận
  2. a,

    $y’=[\tan(x+1)]’+[\cot(1-x)]’$

    $=\dfrac{(x+1)’}{\cos^2(x+1)}-\dfrac{(1-x)’}{\sin^2(1-x)}$

    $=\dfrac{1}{\cos^2(x+1)}+\dfrac{1}{\sin^2(x-1)}$

    b,

    $y’=(\cos^2x)’+(\cos^22x)’+(\cos^23x)’$

    $=2\cos x(\cos x)’+2\cos 2x(\cos 2x)’+2\cos 3x.(\cos 3x)’$

    $=-2\cos x.\sin x -2\cos 2x.\sin 2x.(2x)’-2\cos3x.\sin3x.(3x)’$

    $=-\sin2x-2\sin4x-3\sin6x$

    Bình luận

Viết một bình luận