Tìm x để : 5x/2x+1 nhận được giá trị nguyên 09/08/2021 Bởi Peyton Tìm x để : 5x/2x+1 nhận được giá trị nguyên
Đáp án: `x={0;-1;2;-3}` Giải thích các bước giải: ta có : `(5x)/(2x+1)` `\in` `Z` `=>` `5x` `\vdots` `2x+1` `->` `2(5x)` `\vdots` `2x+1` `->` `10x` `\vdots` `2x+1` $\\$ `=>` `2x+1` `\vdots` `2x+1` `->` `5(2x+1)` `\vdots` `2x+1` `->` `10x+5` `\vdots` `2x+1` __________________________________________ `=>` `(10x)-(10x+5)` `\vdots` `2x+1` `=>` `-5` `\vdots` `2x+1` `=>` `2x+1` `\in` `Ư(-5)={1;-1;5;-5}` `=>` `x={0;-1;2;-3}` Bình luận
Đáp án: tham khảo ạ≈ω Giải thích các bước giải: để ` (5x)/(2x+1 ` nhận giá trị nguyên thì ` 5x \vdots 2x +1 ` `10x \vdots 2x+1 ` `5.(2x+1)-5 \vdots 2x+1 ` `2x +1 \vdots 2x+1 ` `5 \vdots 2x+1 ` `2x+1 \inƯ(5)={1;-1;5;-5}` `x={0;-1;2;-3}` Bình luận
Đáp án:
`x={0;-1;2;-3}`
Giải thích các bước giải:
ta có : `(5x)/(2x+1)` `\in` `Z`
`=>` `5x` `\vdots` `2x+1`
`->` `2(5x)` `\vdots` `2x+1`
`->` `10x` `\vdots` `2x+1`
$\\$
`=>` `2x+1` `\vdots` `2x+1`
`->` `5(2x+1)` `\vdots` `2x+1`
`->` `10x+5` `\vdots` `2x+1`
__________________________________________
`=>` `(10x)-(10x+5)` `\vdots` `2x+1`
`=>` `-5` `\vdots` `2x+1`
`=>` `2x+1` `\in` `Ư(-5)={1;-1;5;-5}`
`=>` `x={0;-1;2;-3}`
Đáp án:
tham khảo ạ≈ω
Giải thích các bước giải:
để ` (5x)/(2x+1 ` nhận giá trị nguyên thì
` 5x \vdots 2x +1 `
`10x \vdots 2x+1 `
`5.(2x+1)-5 \vdots 2x+1 `
`2x +1 \vdots 2x+1 `
`5 \vdots 2x+1 `
`2x+1 \inƯ(5)={1;-1;5;-5}`
`x={0;-1;2;-3}`