Tìm x để a, x- (1/x) > 0 b, 2*x – (5/x)> 0 11/08/2021 Bởi Claire Tìm x để a, x- (1/x) > 0 b, 2*x – (5/x)> 0
`a` `TH1: x>0` `=>, x^2-1>0` `=> x^2>1` `=>x>1` `TH2 :x<0` `=>, x^2-1<0` `=>x^2<1` `=>x>-1` `b` `TH1 :x>0` `=>2x^2-5>0` `=>x^2>\frac{5}{2}` `=> x>\frac{sqrt{10}}{2}` `TH2: x<0` `=> 2x^2-5<0` `=>x^2<\frac{5}{2}` `=>x>\frac{-sqrt{10}}{2}` Bình luận
Đáp án: Ta có : $x – 1/x = x^2 – 1/x > 0$ ( ĐKXĐ : $x \neq 0$) th1 : <=> $\left \{ {{x^2 – 1 > 0} \atop {x > 0}} \right.$ <=> $\left \{ {{x > 1} \atop {x > 0 }} \right.$ <=> x > 1 th2 : <=> $\left \{ {{x^2 – 1 < 0} \atop {x < 0}} \right.$ <=> $\left \{ {{x < 1 } \atop {x < 0}} \right.$ => x < 0 Vậy x – 1/x > 0 <=> \(\left[ \begin{array}{l}x> 1\\x < 0\end{array} \right.\) 2. Ta có : $2x – 5/x = 2x^2 – 5/x > 0$ ( ĐKXĐ : $x \neq 0$) th1 : <=> $\left \{ {{2x^2 – 5 > 0} \atop {x > 0}} \right.$ <=> $\left \{ {{x > \sqrt{5/2} } \atop {x > 0}} \right.$ $<=> x > \sqrt{5/2}$ th2 : <=> $\left \{ {{2x^2 – 5 < 0} \atop {x < 0}} \right.$ <=> $\left \{ {{x < \sqrt{5/2} } \atop {x < 0}} \right.$ <=> x < 0 Vậy 2x – 5/x > 0 <=> \(\left[ \begin{array}{l}x > \sqrt{5/2}\\x < 0\end{array} \right.\) Giải thích các bước giải: Bình luận
`a`
`TH1: x>0`
`=>, x^2-1>0`
`=> x^2>1`
`=>x>1`
`TH2 :x<0`
`=>, x^2-1<0`
`=>x^2<1`
`=>x>-1`
`b`
`TH1 :x>0`
`=>2x^2-5>0`
`=>x^2>\frac{5}{2}`
`=> x>\frac{sqrt{10}}{2}`
`TH2: x<0`
`=> 2x^2-5<0`
`=>x^2<\frac{5}{2}`
`=>x>\frac{-sqrt{10}}{2}`
Đáp án:
Ta có :
$x – 1/x = x^2 – 1/x > 0$ ( ĐKXĐ : $x \neq 0$)
th1 :
<=> $\left \{ {{x^2 – 1 > 0} \atop {x > 0}} \right.$
<=> $\left \{ {{x > 1} \atop {x > 0 }} \right.$
<=> x > 1
th2 :
<=> $\left \{ {{x^2 – 1 < 0} \atop {x < 0}} \right.$
<=> $\left \{ {{x < 1 } \atop {x < 0}} \right.$
=> x < 0
Vậy x – 1/x > 0 <=> \(\left[ \begin{array}{l}x> 1\\x < 0\end{array} \right.\)
2. Ta có :
$2x – 5/x = 2x^2 – 5/x > 0$ ( ĐKXĐ : $x \neq 0$)
th1 :
<=> $\left \{ {{2x^2 – 5 > 0} \atop {x > 0}} \right.$
<=> $\left \{ {{x > \sqrt{5/2} } \atop {x > 0}} \right.$
$<=> x > \sqrt{5/2}$
th2 :
<=> $\left \{ {{2x^2 – 5 < 0} \atop {x < 0}} \right.$
<=> $\left \{ {{x < \sqrt{5/2} } \atop {x < 0}} \right.$
<=> x < 0
Vậy 2x – 5/x > 0 <=> \(\left[ \begin{array}{l}x > \sqrt{5/2}\\x < 0\end{array} \right.\)
Giải thích các bước giải: