Tìm x để: a) (x – 4) (x + 5) < 0 b) (x +1,5) (x -3) > 0 19/08/2021 Bởi Julia Tìm x để: a) (x – 4) (x + 5) < 0 b) (x +1,5) (x -3) > 0
$a$ ) `( x – 4) (x + 5) < 0` `⇒` `x-4` và `x+5` khác dấu $TH1$.$\left\{\begin{matrix}x-4 > 0 & \\x+5 < 0 & \end{matrix}\right.$ $⇒$ $KTM$ $TH2$.$\left\{\begin{matrix}x-4 < 0 & \\x+5 > 0 & \end{matrix}\right.$ $⇒$ $-5 < x < 4$ ($TM$) Vậy $-5 < x < 4$ $b$) `(x +1,5) (x -3) > 0` $TH1$.$\left\{\begin{matrix}x+1,5 > 0 & \\x-3 > 0 & \end{matrix}\right.$ $⇒$ $x > 3$ $TH2$.$\left\{\begin{matrix}x+1,5 < 0 & \\x-3 < 0 & \end{matrix}\right.$ $⇒$ $x < -1,5$ Vậy `x< -1,5; x>3` Bình luận
Đáp án: $ a) (x-4)(x+5) < 0$ $\text{Th1 :}$ ⇔\(\left[ \begin{array}{l}x-4<0\\x+5>0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x<4(nhận)\\x>-5(nhận)\end{array} \right.\) $\text{TH2 :}$ ⇔\(\left[ \begin{array}{l}x-4>0\\x+5<0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x>4(loại)\\x<-5(loại)\end{array} \right.\) $\text{Vậy -5<x<4}$ $b) (x+1,5)(x-3)>0$ $\text{TH1:}$ ⇔\(\left[ \begin{array}{l}x+1,5>0\\x-3<0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x>-1,5(loại)\\x<3(loại)\end{array} \right.\) $\text{TH2:}$ ⇔\(\left[ \begin{array}{l}x+1,5<0\\x-3>0\end{array} \right.\) ⇔\(\left[ \begin{array}{l}x<-1,5(nhận)\\x>3(nhận)\end{array} \right.\) $\text{Vậy 3<x<-1,5}$ Bình luận
$a$ ) `( x – 4) (x + 5) < 0`
`⇒` `x-4` và `x+5` khác dấu
$TH1$.$\left\{\begin{matrix}x-4 > 0 & \\x+5 < 0 & \end{matrix}\right.$ $⇒$ $KTM$
$TH2$.$\left\{\begin{matrix}x-4 < 0 & \\x+5 > 0 & \end{matrix}\right.$ $⇒$ $-5 < x < 4$ ($TM$)
Vậy $-5 < x < 4$
$b$) `(x +1,5) (x -3) > 0`
$TH1$.$\left\{\begin{matrix}x+1,5 > 0 & \\x-3 > 0 & \end{matrix}\right.$ $⇒$ $x > 3$
$TH2$.$\left\{\begin{matrix}x+1,5 < 0 & \\x-3 < 0 & \end{matrix}\right.$ $⇒$ $x < -1,5$
Vậy `x< -1,5; x>3`
Đáp án:
$ a) (x-4)(x+5) < 0$
$\text{Th1 :}$
⇔\(\left[ \begin{array}{l}x-4<0\\x+5>0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x<4(nhận)\\x>-5(nhận)\end{array} \right.\)
$\text{TH2 :}$
⇔\(\left[ \begin{array}{l}x-4>0\\x+5<0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x>4(loại)\\x<-5(loại)\end{array} \right.\)
$\text{Vậy -5<x<4}$
$b) (x+1,5)(x-3)>0$
$\text{TH1:}$
⇔\(\left[ \begin{array}{l}x+1,5>0\\x-3<0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x>-1,5(loại)\\x<3(loại)\end{array} \right.\)
$\text{TH2:}$
⇔\(\left[ \begin{array}{l}x+1,5<0\\x-3>0\end{array} \right.\)
⇔\(\left[ \begin{array}{l}x<-1,5(nhận)\\x>3(nhận)\end{array} \right.\)
$\text{Vậy 3<x<-1,5}$