Tìm điều kiện xác định của mỗi biểu thức a)căn(2+x/5-x) b)2/căn(x^2-x+1) c)căn(x+3/x)+căn -3x 01/10/2021 Bởi Audrey Tìm điều kiện xác định của mỗi biểu thức a)căn(2+x/5-x) b)2/căn(x^2-x+1) c)căn(x+3/x)+căn -3x
Đáp án: a. \( – 2 \le x < 5\) Giải thích các bước giải: \(\begin{array}{*{20}{l}}{a.\sqrt {\dfrac{{x + 2}}{{5 – x}}} }\\{DK:\left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{x + 2 \ge 0}\\{5 – x > 0}\end{array}} \right.\\\left\{ \begin{array}{l}x + 2 \le 0\\5 – x < 0\end{array} \right.\end{array} \right.}\\{ \to \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{x \ge – 2}\\{x < 5}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{x \le – 2}\\{x > 5}\end{array}\left( l \right)} \right.\end{array} \right.}\\{ \to – 2 \le x < 5}\\{b.\dfrac{2}{{\sqrt {{x^2} – x + 1} }}}\\{DK:{x^2} – x + 1 > 0\left( {ld} \right)\forall x \in R}\\{ \to DK:\forall x}\\{c.\sqrt {\dfrac{{x + 3}}{x}} {\rm{\;}} + \sqrt { – 3x} }\\{DK:\left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{x + 3 \ge 0}\\{x > 0}\\{ – 3x \ge 0}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{x + 3 \le 0}\\{x < 0}\\{ – 3x \ge 0}\end{array}} \right.\end{array} \right.}\\\begin{array}{l} \to \left[ \begin{array}{l}\left\{ {\begin{array}{*{20}{l}}{x \ge – 3}\\{x > 0}\\{x \le 0}\end{array}} \right.\\\left\{ {\begin{array}{*{20}{l}}{x \le – 3}\\{x < 0}\\{x \le 0}\end{array}} \right.\end{array} \right.\\ \to x ≤ -3\end{array}\end{array}\) Bình luận
Đáp án:
a. \( – 2 \le x < 5\)
Giải thích các bước giải:
\(\begin{array}{*{20}{l}}
{a.\sqrt {\dfrac{{x + 2}}{{5 – x}}} }\\
{DK:\left[ \begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{x + 2 \ge 0}\\
{5 – x > 0}
\end{array}} \right.\\
\left\{ \begin{array}{l}
x + 2 \le 0\\
5 – x < 0
\end{array} \right.
\end{array} \right.}\\
{ \to \left[ \begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{x \ge – 2}\\
{x < 5}
\end{array}} \right.\\
\left\{ {\begin{array}{*{20}{l}}
{x \le – 2}\\
{x > 5}
\end{array}\left( l \right)} \right.
\end{array} \right.}\\
{ \to – 2 \le x < 5}\\
{b.\dfrac{2}{{\sqrt {{x^2} – x + 1} }}}\\
{DK:{x^2} – x + 1 > 0\left( {ld} \right)\forall x \in R}\\
{ \to DK:\forall x}\\
{c.\sqrt {\dfrac{{x + 3}}{x}} {\rm{\;}} + \sqrt { – 3x} }\\
{DK:\left[ \begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{x + 3 \ge 0}\\
{x > 0}\\
{ – 3x \ge 0}
\end{array}} \right.\\
\left\{ {\begin{array}{*{20}{l}}
{x + 3 \le 0}\\
{x < 0}\\
{ – 3x \ge 0}
\end{array}} \right.
\end{array} \right.}\\
\begin{array}{l}
\to \left[ \begin{array}{l}
\left\{ {\begin{array}{*{20}{l}}
{x \ge – 3}\\
{x > 0}\\
{x \le 0}
\end{array}} \right.\\
\left\{ {\begin{array}{*{20}{l}}
{x \le – 3}\\
{x < 0}\\
{x \le 0}
\end{array}} \right.
\end{array} \right.\\
\to x ≤ -3
\end{array}
\end{array}\)