Tìm đkxđ của pt sau ( Tìm đkxđ giải đầy đủ ra nha ) $\frac{1}{x-1}$ +$\frac{2x^2-5}{x^3 – 1}$ = $\frac{4}{x^2+x+1}$ 24/10/2021 Bởi Kennedy Tìm đkxđ của pt sau ( Tìm đkxđ giải đầy đủ ra nha ) $\frac{1}{x-1}$ +$\frac{2x^2-5}{x^3 – 1}$ = $\frac{4}{x^2+x+1}$
ĐKXĐ $\begin{cases}\\x-1 \ne 0\\\\x^3-1 \ne 0 \\\\x^2+x+1 \ne0 \\\\\end{cases}$ $\to$ $\begin{cases}\\x \ne 1\\\\(x-1)(x^2+x+1) \ne 0 \\\\x^2+x+1 \ne0 \\\\\end{cases}$ Ta có $x^2+x+1 = x^2 + 2 * x * \dfrac{1}{2} + 1 = (x^2 + 2*x* \dfrac{1}{2} + \dfrac{1}{4}) + \dfrac{3}{4} = (x+\dfrac{1}{4})^2 + \dfrac{3}{4} > 0$ $ \to x^2 +x +1 > 0 \to x^2 +x +1 \neq 0$ $\to$ $\begin{cases}\\x \ne 1\\\\ x-1 \ne 0 \\\\x^2+x+1 \ne0 \\\\\end{cases}$ $\to x \neq 1$ Vậy $ x \neq 1$ Bình luận
ĐKXĐ: $\begin{cases}x-1\ne 0\\x³-1\ne 0\\x²+x+1\ne 0\end{cases}$ $↔x³-1\ne 0$ $↔x³\ne 1$ $↔x\ne 1$ $\dfrac{1}{x-1}+\dfrac{2x²-5}{x³-1}=\dfrac{4}{x²+x+1}$ $↔\dfrac{x²+x+1}{(x-1)(x²+x+1)}+\dfrac{2x²-5}{(x-1)(x²+x+1)}=\dfrac{4(x-1)}{(x-1)(x²+x+1)}$ $↔x²+x+1+2x²-5=4x-4$ $↔3x²+x-4=4x-4$ $↔3x²+x-4x=-4+4$ $↔3x²-3x=0$ $↔3x(x-1)=0$ \(\leftrightarrow\left[ \begin{array}{l}x=0\\x-1=0\end{array} \right.\) \(\leftrightarrow\left[ \begin{array}{l}x=0(tm)\\x=1(ktm)\end{array} \right.\) Vậy pt có tập nghiệm $S=\{0\}$ Bình luận
ĐKXĐ
$\begin{cases}\\x-1 \ne 0\\\\x^3-1 \ne 0 \\\\x^2+x+1 \ne0 \\\\\end{cases}$
$\to$
$\begin{cases}\\x \ne 1\\\\(x-1)(x^2+x+1) \ne 0 \\\\x^2+x+1 \ne0 \\\\\end{cases}$
Ta có $x^2+x+1 = x^2 + 2 * x * \dfrac{1}{2} + 1 = (x^2 + 2*x* \dfrac{1}{2} + \dfrac{1}{4}) + \dfrac{3}{4} = (x+\dfrac{1}{4})^2 + \dfrac{3}{4} > 0$
$ \to x^2 +x +1 > 0 \to x^2 +x +1 \neq 0$
$\to$
$\begin{cases}\\x \ne 1\\\\ x-1 \ne 0 \\\\x^2+x+1 \ne0 \\\\\end{cases}$
$\to x \neq 1$
Vậy $ x \neq 1$
ĐKXĐ: $\begin{cases}x-1\ne 0\\x³-1\ne 0\\x²+x+1\ne 0\end{cases}$
$↔x³-1\ne 0$
$↔x³\ne 1$
$↔x\ne 1$
$\dfrac{1}{x-1}+\dfrac{2x²-5}{x³-1}=\dfrac{4}{x²+x+1}$
$↔\dfrac{x²+x+1}{(x-1)(x²+x+1)}+\dfrac{2x²-5}{(x-1)(x²+x+1)}=\dfrac{4(x-1)}{(x-1)(x²+x+1)}$
$↔x²+x+1+2x²-5=4x-4$
$↔3x²+x-4=4x-4$
$↔3x²+x-4x=-4+4$
$↔3x²-3x=0$
$↔3x(x-1)=0$
\(\leftrightarrow\left[ \begin{array}{l}x=0\\x-1=0\end{array} \right.\)
\(\leftrightarrow\left[ \begin{array}{l}x=0(tm)\\x=1(ktm)\end{array} \right.\)
Vậy pt có tập nghiệm $S=\{0\}$