Tìm x: $\frac{x-1}{8}$ + $\frac{x-1}{9}$ = $\frac{x-1}{10}$ +$\frac{x-1}{11}$

Tìm x:
$\frac{x-1}{8}$ + $\frac{x-1}{9}$ = $\frac{x-1}{10}$ +$\frac{x-1}{11}$

0 bình luận về “Tìm x: $\frac{x-1}{8}$ + $\frac{x-1}{9}$ = $\frac{x-1}{10}$ +$\frac{x-1}{11}$”

  1. Em tham khảo:

      $\frac{x-1}{8}+$$\frac{x-1}{9}=$$\frac{x-1}{10}+$$\frac{x-1}{11}$    

    ⇔ $\frac{x-1}{8}+$$\frac{x-1}{9}-$$\frac{x-1}{10}-$$\frac{x-1}{11}=0$    

    ⇔$(x-1)$.($\frac{1}{8}+$$\frac{1}{9}-$$\frac{1}{10}-$$\frac{1}{11}$) $=0$    

    Vì $\frac{1}{8}+$$\frac{1}{9}-$$\frac{1}{10}-$$\frac{1}{11}>0$

    ⇔$x-1=0$

    ⇔$x=1$

    HỌC TỐT 

    @Chin………..

    Bình luận
  2. $\dfrac{x-1}{8}+\dfrac{x-1}{9}=\dfrac{x-1}{10}+\dfrac{x-1}{11}$

    $\dfrac{x-1}{8}+\dfrac{x-1}{9}-\dfrac{x-1}{10}-\dfrac{x-1}{11}=0$

    $(x-1).(\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11})=0$

    Vì $\dfrac{1}{8}+\dfrac{1}{9}-\dfrac{1}{10}-\dfrac{1}{11}>0$

    $→x-1=0$

    $→x=1$

    Vậy $x=1$

    Bình luận

Viết một bình luận