Tìm giá trị của x và y để : S = |x + 2 | + |2y –10 | + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó 01/08/2021 Bởi Ayla Tìm giá trị của x và y để : S = |x + 2 | + |2y –10 | + 2011 đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó
Bạn lưu ý : Giá trị tuyệt đối của một số bất kì luôn lớn hơn hoặc bằng `0`. Áp dụng vào bài làm **************** Ta có ` |x+2| \ge 0` ` |2y-10| \ge0` ` => |x+2| + |2y-10| + 2011 \ge 2011` ` => S_{min} = 2011` Dấu `=` xảy ra khi ` x +2 = 0 => x= -2` ` 2y -10 = 0=> 2y =10 => y = 5` Vậy GTNN của ` S` là ` 2011` ; đạt được khi ` x = -2; y = 5` Bình luận
Đáp án: `x=-2` `y=5` Giải thích các bước giải: Ta có : `|x + 2| ≥ 0 ; |2 y – 10| ≥ 0` Vậy để S nhỏ nhất thì `|x + 2|` và `|2y–10|` phải nhỏ nhất tức `|x + 2| = 0` và `|2y – 10| = 0` Suy ra `x + 2 = 0 => x = – 2` và `2y – 10 = 0 => y = 5`. Khi đó S đạt giá trị nhỏ nhất bằng `2011.` Bình luận
Bạn lưu ý : Giá trị tuyệt đối của một số bất kì luôn lớn hơn hoặc bằng `0`. Áp dụng vào bài làm
****************
Ta có
` |x+2| \ge 0`
` |2y-10| \ge0`
` => |x+2| + |2y-10| + 2011 \ge 2011`
` => S_{min} = 2011`
Dấu `=` xảy ra khi
` x +2 = 0 => x= -2`
` 2y -10 = 0=> 2y =10 => y = 5`
Vậy GTNN của ` S` là ` 2011` ; đạt được khi ` x = -2; y = 5`
Đáp án:
`x=-2`
`y=5`
Giải thích các bước giải:
Ta có : `|x + 2| ≥ 0 ; |2 y – 10| ≥ 0`
Vậy để S nhỏ nhất thì `|x + 2|` và `|2y–10|` phải nhỏ nhất
tức `|x + 2| = 0` và `|2y – 10| = 0`
Suy ra `x + 2 = 0 => x = – 2` và `2y – 10 = 0 => y = 5`.
Khi đó S đạt giá trị nhỏ nhất bằng `2011.`