tìm giá trị lớn nhất của f(x) = 2/9x(3-x) trên đoạn [0;3]. Giúp mình ạ

tìm giá trị lớn nhất của f(x) = 2/9x(3-x) trên đoạn [0;3]. Giúp mình ạ

0 bình luận về “tìm giá trị lớn nhất của f(x) = 2/9x(3-x) trên đoạn [0;3]. Giúp mình ạ”

  1. Ta có

    $f(x) = \dfrac{2}{9x(3-x)} = \dfrac{2}{27x – 9x^2}$

    Vậy

    $f'(x) = \dfrac{ – 2(27 – 18x)}{(27x-9x^2)^2}$

    Xét ptrinh $f'(x) = 0$ ta có

    $-2(27 – 18x) = 0$

    $<-> x = \dfrac{3}{2}$

    Ta có $f'(1) < 0$, $f'(2) > 0$, do đó hso nghịch biến trên $[0, \dfrac{3}{2})$ và đồng biến trên $(\dfrac{3}{2}, 3]$. Do đó $f(\dfrac{3}{2})$ là điểm cực tiểu.

    Tuy nhiên hso ko xác định tại $x = 0$ và $x = 3$, do đó ko tồn tại GTLN của $f(x)$ trên $[0,3]$.

    Bình luận

Viết một bình luận