Tìm giới hạn
1. lim [(-2x^2+x-1) / (3+x)]
x–>-vô cực
2. lim [(3x^2+x+5) / (1+2x)]
x–>-vô cực
Tìm giới hạn
1. lim [(-2x^2+x-1) / (3+x)]
x–>-vô cực
2. lim [(3x^2+x+5) / (1+2x)]
x–>-vô cực
1.
$\lim\limits_{x\to -\infty}\dfrac{-2x^2+x-1}{x+3}$
$=\lim\limits_{x\to -\infty}x.\dfrac{-2+\dfrac{1}{x}-\dfrac{1}{x^2}}{1+\dfrac{3}{x}}$
$=+\infty$
2.
$\lim\limits_{x\to -\infty}\dfrac{3x^2+x+5}{2x+1}$
$=\lim\limits_{x\to -\infty}x.\dfrac{3+\dfrac{1}{x}+\dfrac{5}{x^2}}{2+\dfrac{1}{x}}$
$=-\infty$
$1)$ $\lim\limits_{x\to -∞} \dfrac{-2x^2+x-1}{3+x}$
$=\lim\limits_{x\to -∞} \dfrac{x^2 (-2+\dfrac{1}{x}+\dfrac{1}{x^2})}{x(\dfrac{3}{x}+1)}$
$=\lim\limits_{x\to -∞} x .\dfrac{-2+\dfrac{1}{x}+\dfrac{1}{x^2}}{\dfrac{3}{x}+1}=+∞$
(vì $\lim\limits_{x\to -∞} x=-∞$
và $\lim\limits_{x\to -∞} \dfrac{-2+\dfrac{1}{x}+\dfrac{1}{x^2}}{\dfrac{3}{x}+1}=-2<0$)
$\\$
$2)$ $\lim\limits_{x\to -∞} \dfrac{3x^2+x+5}{1+2x}$
$=\lim\limits_{x\to -∞} \dfrac{x^2 (3+\dfrac{1}{x}+\dfrac{5}{x^2})}{x(\dfrac{1}{x}+2)}$
$=\lim\limits_{x\to -∞} x .\dfrac{3+\dfrac{1}{x}+\dfrac{5}{x^2}}{\dfrac{1}{x}+2}=-∞$
(Vì $\lim\limits_{x\to -∞} x=-∞$
và $\lim\limits_{x\to -∞} \dfrac{3+\dfrac{1}{x}+\dfrac{5}{x^2}}{\dfrac{1}{x}+2}=\dfrac{3}{2}>0$)