tìm giới hạn lim (x->1) $\frac{\sqrt[]{x+3}-\sqrt[]{3x+1}}{x-1}$ 09/11/2021 Bởi aikhanh tìm giới hạn lim (x->1) $\frac{\sqrt[]{x+3}-\sqrt[]{3x+1}}{x-1}$
Đáp án: $\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {x + 3} – \sqrt {3x + 1} }}{{x – 1}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {\sqrt {x + 3} – \sqrt {3x + 1} } \right)\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}{{\left( {x – 1} \right).\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{x + 3 – \left( {3x + 1} \right)}}{{\left( {x – 1} \right)\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{2 – 2x}}{{\left( {x – 1} \right)\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \dfrac{{ – 1}}{{\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}\\ = \dfrac{{ – 1}}{{\sqrt {1 + 3} + \sqrt {3 + 1} }}\\ = – \dfrac{1}{4}\end{array}$ Bình luận
$\lim\limits_{x\to 1}\dfrac{\sqrt{x+3}-\sqrt{3x+1}}{x-1}$ $=\lim\limits_{x\to 1}\dfrac{x+3-3x-1}{(x-1)(\sqrt{x+3}+\sqrt{3x+1})}$ $=\lim\limits_{x\to 1}\dfrac{-2(x-1)}{(x-1)(\sqrt{x+3}+\sqrt{3x+1} }$ $=\lim\limits_{x\to 1}\dfrac{-2}{\sqrt{x+3}+\sqrt{3x+1}}$ $=\dfrac{-2}{2+2}$ $=\dfrac{-1}{2}$ Bình luận
Đáp án:
$\begin{array}{l}
\mathop {\lim }\limits_{x \to 1} \dfrac{{\sqrt {x + 3} – \sqrt {3x + 1} }}{{x – 1}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{\left( {\sqrt {x + 3} – \sqrt {3x + 1} } \right)\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}{{\left( {x – 1} \right).\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{x + 3 – \left( {3x + 1} \right)}}{{\left( {x – 1} \right)\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{2 – 2x}}{{\left( {x – 1} \right)\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}\\
= \mathop {\lim }\limits_{x \to 1} \dfrac{{ – 1}}{{\left( {\sqrt {x + 3} + \sqrt {3x + 1} } \right)}}\\
= \dfrac{{ – 1}}{{\sqrt {1 + 3} + \sqrt {3 + 1} }}\\
= – \dfrac{1}{4}
\end{array}$
$\lim\limits_{x\to 1}\dfrac{\sqrt{x+3}-\sqrt{3x+1}}{x-1}$
$=\lim\limits_{x\to 1}\dfrac{x+3-3x-1}{(x-1)(\sqrt{x+3}+\sqrt{3x+1})}$
$=\lim\limits_{x\to 1}\dfrac{-2(x-1)}{(x-1)(\sqrt{x+3}+\sqrt{3x+1} }$
$=\lim\limits_{x\to 1}\dfrac{-2}{\sqrt{x+3}+\sqrt{3x+1}}$
$=\dfrac{-2}{2+2}$
$=\dfrac{-1}{2}$