Tìm giới hạn sau: Lim ( (∛2n -n ³) + n -1 ) 20/07/2021 Bởi Valerie Tìm giới hạn sau: Lim ( (∛2n -n ³) + n -1 )
Đáp án: Giải thích các bước giải: \(\begin{array}{l}\lim \sqrt[3]{{2n – {n^3}}} + n – 1 = \lim \frac{{\left( {\sqrt[3]{{2n – {n^3}}} + n – 1} \right)\left( {\sqrt[3]{{{{(2n – {n^3})}^2}}} – \sqrt[3]{{2n – {n^3}}}.\left( {n – 1} \right) + {{\left( {n – 1} \right)}^2}} \right)}}{{\sqrt[3]{{{{(2n – {n^3})}^2}}} – \sqrt[3]{{2n – {n^3}}}.\left( {n – 1} \right) + {{\left( {n – 1} \right)}^2}}}\\ = \lim \frac{{2n – {n^3} + {n^3} – 3{n^2} + 3n – 1}}{{\sqrt[3]{{{{(2n – {n^3})}^2}}} – \sqrt[3]{{2n – {n^3}}}.\left( {n – 1} \right) + {{\left( {n – 1} \right)}^2}}}\\ = \lim \frac{{ – 3{n^2} + 5n – 1}}{{\sqrt[3]{{{{(2n – {n^3})}^2}}} – \sqrt[3]{{2n – {n^3}}}.\left( {n – 1} \right) + {{\left( {n – 1} \right)}^2}}}\\ = \lim \frac{{ – 3 + \frac{5}{n} – \frac{1}{{{n^2}}}}}{{\sqrt[3]{{\frac{4}{{{n^4}}} – \frac{4}{{{n^2}}} + 1}} – \sqrt[3]{{\frac{2}{{{n^2}}} – 1}}.\left( {1 – \frac{1}{n}} \right) + 1 – \frac{2}{n} + \frac{1}{{{n^2}}}}} = \frac{{ – 3}}{{1 + 1 + 1}} = – 1\end{array}\) Bình luận
Đáp án:
Giải thích các bước giải:
\(\begin{array}{l}
\lim \sqrt[3]{{2n – {n^3}}} + n – 1 = \lim \frac{{\left( {\sqrt[3]{{2n – {n^3}}} + n – 1} \right)\left( {\sqrt[3]{{{{(2n – {n^3})}^2}}} – \sqrt[3]{{2n – {n^3}}}.\left( {n – 1} \right) + {{\left( {n – 1} \right)}^2}} \right)}}{{\sqrt[3]{{{{(2n – {n^3})}^2}}} – \sqrt[3]{{2n – {n^3}}}.\left( {n – 1} \right) + {{\left( {n – 1} \right)}^2}}}\\
= \lim \frac{{2n – {n^3} + {n^3} – 3{n^2} + 3n – 1}}{{\sqrt[3]{{{{(2n – {n^3})}^2}}} – \sqrt[3]{{2n – {n^3}}}.\left( {n – 1} \right) + {{\left( {n – 1} \right)}^2}}}\\
= \lim \frac{{ – 3{n^2} + 5n – 1}}{{\sqrt[3]{{{{(2n – {n^3})}^2}}} – \sqrt[3]{{2n – {n^3}}}.\left( {n – 1} \right) + {{\left( {n – 1} \right)}^2}}}\\
= \lim \frac{{ – 3 + \frac{5}{n} – \frac{1}{{{n^2}}}}}{{\sqrt[3]{{\frac{4}{{{n^4}}} – \frac{4}{{{n^2}}} + 1}} – \sqrt[3]{{\frac{2}{{{n^2}}} – 1}}.\left( {1 – \frac{1}{n}} \right) + 1 – \frac{2}{n} + \frac{1}{{{n^2}}}}} = \frac{{ – 3}}{{1 + 1 + 1}} = – 1
\end{array}\)