Tìm GTLN biết x>0;y>0;z>0; x+y+z=1 A= $\sqrt[]{x²+xyz}$ + $\sqrt[]{y²+xyz}$ + $\sqrt[]{z²+xyz}$ + 9.$\sqrt[]{xyz}$ 27/11/2021 Bởi Josie Tìm GTLN biết x>0;y>0;z>0; x+y+z=1 A= $\sqrt[]{x²+xyz}$ + $\sqrt[]{y²+xyz}$ + $\sqrt[]{z²+xyz}$ + 9.$\sqrt[]{xyz}$
Đáp án: Giải thích các bước giải: Ta có: $\sqrt{x^2+xyz}=\dfrac{\sqrt{3}}{2}\sqrt{\dfrac{4x}{3}(x+yz)} \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{4x}{3}+x+yz \right)$ $⇔\sqrt{x^2+xyz} \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{7x}{3}+yz \right)$ Hoàn toàn tương tự: $\sqrt{y^2+xyz} \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{7y}{3}+zx \right)$ $\sqrt{z^2+xyz} \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{7z}{3}+xy \right)$ Cộng vế với vế: $⇒A \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{7x}{3}+\dfrac{7y}{3}+\dfrac{7z}{3}+xy+yz+zx \right)+9\sqrt{xyz}$ $⇒A \leq \dfrac{7\sqrt{3}}{12}+\dfrac{\sqrt{3}}{4}\left(xy+yz+zx \right)+9\sqrt{xyz}$ Ta lại có: $xy+yz+zx \leq \dfrac{1}{3}(x+y+z)^2=\dfrac{1}{3}$ Và $xyz \leq \dfrac{1}{27}(x+y+z)^3=\dfrac{1}{27}⇒9\sqrt{xyz} \leq \sqrt{3}$ Do đó: $A \leq \dfrac{7\sqrt{3}}{12}+\dfrac{\sqrt{3}}{4}·\dfrac{1}{3}+\sqrt{3}=\dfrac{5\sqrt{3}}{3}$ Vậy $A_{max}=\dfrac{5\sqrt{3}}{3}$ khi $x=y=z=1$ Bình luận
Đáp án:
Giải thích các bước giải:
Ta có:
$\sqrt{x^2+xyz}=\dfrac{\sqrt{3}}{2}\sqrt{\dfrac{4x}{3}(x+yz)} \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{4x}{3}+x+yz \right)$
$⇔\sqrt{x^2+xyz} \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{7x}{3}+yz \right)$
Hoàn toàn tương tự:
$\sqrt{y^2+xyz} \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{7y}{3}+zx \right)$
$\sqrt{z^2+xyz} \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{7z}{3}+xy \right)$
Cộng vế với vế:
$⇒A \leq \dfrac{\sqrt{3}}{4}\left(\dfrac{7x}{3}+\dfrac{7y}{3}+\dfrac{7z}{3}+xy+yz+zx \right)+9\sqrt{xyz}$
$⇒A \leq \dfrac{7\sqrt{3}}{12}+\dfrac{\sqrt{3}}{4}\left(xy+yz+zx \right)+9\sqrt{xyz}$
Ta lại có:
$xy+yz+zx \leq \dfrac{1}{3}(x+y+z)^2=\dfrac{1}{3}$
Và
$xyz \leq \dfrac{1}{27}(x+y+z)^3=\dfrac{1}{27}⇒9\sqrt{xyz} \leq \sqrt{3}$
Do đó:
$A \leq \dfrac{7\sqrt{3}}{12}+\dfrac{\sqrt{3}}{4}·\dfrac{1}{3}+\sqrt{3}=\dfrac{5\sqrt{3}}{3}$
Vậy $A_{max}=\dfrac{5\sqrt{3}}{3}$ khi $x=y=z=1$