Tìm GTLN C=-(x-2)^2 – (2x-1)^2 D=2+5x-x^2 Giúp mình với. Mình cần gấp. Cảm ơn trước 29/10/2021 Bởi aihong Tìm GTLN C=-(x-2)^2 – (2x-1)^2 D=2+5x-x^2 Giúp mình với. Mình cần gấp. Cảm ơn trước
a/ $-(x-2)²-(2x-1)²$ $=-x²+4x-4-4x²+4x-1$ $=-5x²+8x-5$ $=-5(x²-2.\dfrac{4}{5}x+\dfrac{16}{25}+\dfrac{9}{25})$ $=-5(x-\dfrac{4}{5})²-\dfrac{9}{5}≤-\dfrac{9}{5}$ $→\max C=-\dfrac{9}{5}↔x=\dfrac{4}{5}$ b/ $2+5x-x²$ $=-(x²-2.\dfrac{5}{2}.x+\dfrac{25}{4})+\dfrac{33}{4}$ $=-(x-\dfrac{5}{2})²+\dfrac{33}{4}≤\dfrac{33}{4}$ $→\max D=\dfrac{33}{4}↔x=\dfrac{5}{2}$ Bình luận
Giải thích các bước giải : `C=-(x-2)^2-(2x-1)^2` `<=>C=-(x^2-4x+4)-(4x^2-4x+1)` `<=>C=-x^2+4x-4-4x^2+4x-1` `<=>C=-5x^2+8x-5` `<=>C=-5(x^2-(8x)/5+1)` `<=>C=-5[x^2-2×x×4/5+(4/5)^2-(16)/(25)+(25)/(25)]` `<=>C=-5[x^2-2×x×4/5+(4/5)^2]-5×(25-16)/(25)` `<=>C=-5(x-4/5)^2-9/5 ≤ -9/5` Xảy ra dấu `=` khi : `-5(x-4/5)^2=0 <=> x-4/5=0 <=> x=4/5` Vậy `C_(max)=-9/5` khi `x=4/5` `D=2+5x-x^2` `<=>D=-(x^2-5x-2)` `<=>D=-[x^2-2×x×5/2+(5/2)^2-(25)/4-8/4]` `<=>D=-[x^2-2×x×5/2+(5/2)^2]+(25+8)/4` `<=>D=-(x-5/2)^2+(33)/4 ≤ (33)/4` Xảy ra dấu `=` khi : `-(x-5/2)^2=0<=>x-5/2=0<=>x=5/2` Vậy `D_(max)=(33)/4` khi `x=5/2` Bình luận
a/ $-(x-2)²-(2x-1)²$
$=-x²+4x-4-4x²+4x-1$
$=-5x²+8x-5$
$=-5(x²-2.\dfrac{4}{5}x+\dfrac{16}{25}+\dfrac{9}{25})$
$=-5(x-\dfrac{4}{5})²-\dfrac{9}{5}≤-\dfrac{9}{5}$
$→\max C=-\dfrac{9}{5}↔x=\dfrac{4}{5}$
b/ $2+5x-x²$
$=-(x²-2.\dfrac{5}{2}.x+\dfrac{25}{4})+\dfrac{33}{4}$
$=-(x-\dfrac{5}{2})²+\dfrac{33}{4}≤\dfrac{33}{4}$
$→\max D=\dfrac{33}{4}↔x=\dfrac{5}{2}$
Giải thích các bước giải :
`C=-(x-2)^2-(2x-1)^2`
`<=>C=-(x^2-4x+4)-(4x^2-4x+1)`
`<=>C=-x^2+4x-4-4x^2+4x-1`
`<=>C=-5x^2+8x-5`
`<=>C=-5(x^2-(8x)/5+1)`
`<=>C=-5[x^2-2×x×4/5+(4/5)^2-(16)/(25)+(25)/(25)]`
`<=>C=-5[x^2-2×x×4/5+(4/5)^2]-5×(25-16)/(25)`
`<=>C=-5(x-4/5)^2-9/5 ≤ -9/5`
Xảy ra dấu `=` khi :
`-5(x-4/5)^2=0 <=> x-4/5=0 <=> x=4/5`
Vậy `C_(max)=-9/5` khi `x=4/5`
`D=2+5x-x^2`
`<=>D=-(x^2-5x-2)`
`<=>D=-[x^2-2×x×5/2+(5/2)^2-(25)/4-8/4]`
`<=>D=-[x^2-2×x×5/2+(5/2)^2]+(25+8)/4`
`<=>D=-(x-5/2)^2+(33)/4 ≤ (33)/4`
Xảy ra dấu `=` khi :
`-(x-5/2)^2=0<=>x-5/2=0<=>x=5/2`
Vậy `D_(max)=(33)/4` khi `x=5/2`