Tìm GTLN / GTNN ạ)P=4x-2 √x +5 b) x- √x +1 12/07/2021 Bởi Ayla Tìm GTLN / GTNN ạ)P=4x-2 √x +5 b) x- √x +1
Giải thích các bước giải: Ta có: \(\begin{array}{l}a,\\P = 4x – 2\sqrt x + 5\,\,\,\,\,\,\,\left( {x \ge 0} \right)\\ = \left( {4x – 2\sqrt x + \dfrac{1}{4}} \right) + \dfrac{{19}}{4}\\ = \left( {{{\left( {2\sqrt x } \right)}^2} – 2.2\sqrt x .\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right) + \dfrac{{19}}{4}\\ = {\left( {2\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{{19}}{4} \ge \dfrac{{19}}{4},\,\,\,\,\forall x \ge 0\\ \Rightarrow {P_{\min }} = \dfrac{{19}}{4} \Leftrightarrow {\left( {2\sqrt x – \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow \sqrt x = \dfrac{1}{4} \Leftrightarrow x = \dfrac{1}{{16}}\\b,\\A = x – \sqrt x + 1\,\,\,\,\,\,\,\,\,\,\left( {x \ge 0} \right)\\ = \left( {x – \sqrt x + \dfrac{1}{4}} \right) + \dfrac{3}{4}\\ = \left( {x – 2.\sqrt x .\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right) + \dfrac{3}{4}\\ = {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4},\,\,\,\,\forall x \ge 0\\ \Rightarrow {A_{\min }} = \dfrac{3}{4} \Leftrightarrow {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow x = \dfrac{1}{4}\end{array}\) Bình luận
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
P = 4x – 2\sqrt x + 5\,\,\,\,\,\,\,\left( {x \ge 0} \right)\\
= \left( {4x – 2\sqrt x + \dfrac{1}{4}} \right) + \dfrac{{19}}{4}\\
= \left( {{{\left( {2\sqrt x } \right)}^2} – 2.2\sqrt x .\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right) + \dfrac{{19}}{4}\\
= {\left( {2\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{{19}}{4} \ge \dfrac{{19}}{4},\,\,\,\,\forall x \ge 0\\
\Rightarrow {P_{\min }} = \dfrac{{19}}{4} \Leftrightarrow {\left( {2\sqrt x – \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow \sqrt x = \dfrac{1}{4} \Leftrightarrow x = \dfrac{1}{{16}}\\
b,\\
A = x – \sqrt x + 1\,\,\,\,\,\,\,\,\,\,\left( {x \ge 0} \right)\\
= \left( {x – \sqrt x + \dfrac{1}{4}} \right) + \dfrac{3}{4}\\
= \left( {x – 2.\sqrt x .\dfrac{1}{2} + {{\left( {\dfrac{1}{2}} \right)}^2}} \right) + \dfrac{3}{4}\\
= {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} + \dfrac{3}{4} \ge \dfrac{3}{4},\,\,\,\,\forall x \ge 0\\
\Rightarrow {A_{\min }} = \dfrac{3}{4} \Leftrightarrow {\left( {\sqrt x – \dfrac{1}{2}} \right)^2} = 0 \Leftrightarrow x = \dfrac{1}{4}
\end{array}\)