Tìm gtln gtnn B=$\frac{2x+3}{x^{2} +2x+3}$ 08/08/2021 Bởi Clara Tìm gtln gtnn B=$\frac{2x+3}{x^{2} +2x+3}$
Giải thích các bước giải: +) Tìm GTNN: Ta có: $\begin{array}{l}B + \dfrac{1}{2} = \dfrac{{2x + 3}}{{{x^2} + 2x + 3}} + \dfrac{1}{2}\\ = \dfrac{{{x^2} + 6x + 9}}{{2\left( {{x^2} + 2x + 3} \right)}}\\ = \dfrac{{{{\left( {x + 3} \right)}^2}}}{{2\left( {{{\left( {x + 1} \right)}^2} + 2} \right)}}\\\text{Do}\left\{ \begin{array}{l}{\left( {x + 3} \right)^2} \ge 0,\forall x\\{\left( {x + 1} \right)^2} + 2 > 0,\forall x\end{array} \right.\\ \Rightarrow \dfrac{{{{\left( {x + 3} \right)}^2}}}{{{{\left( {x + 1} \right)}^2} + 2}} \ge 0,\forall x\\ \Rightarrow B + \dfrac{1}{2} \ge 0\\ \Rightarrow B \ge \dfrac{{ – 1}}{2}\\\text{Dấu bằng xảy ra} \Leftrightarrow {\left( {x + 3} \right)^2} = 0 \Leftrightarrow x = – 3\\\text{Vậy}MinB = \dfrac{{ – 1}}{2} \Leftrightarrow x = – 3\end{array}$ +) Tìm GTLN: Ta có: $\begin{array}{l}B = \dfrac{{2x + 3}}{{{x^2} + 2x + 3}}\\B – 1 = \dfrac{{2x + 3}}{{{x^2} + 2x + 3}} – 1\\ = \dfrac{{ – {x^2}}}{{{x^2} + 2x + 3}}\\ = \dfrac{{ – {x^2}}}{{{{\left( {x + 1} \right)}^2} + 2}}\\\text{Do}\left\{ \begin{array}{l}{x^2} \ge 0,\forall x\\{\left( {x + 1} \right)^2} + 2 \ge 2 > 0,\forall x\end{array} \right.\\ \Rightarrow \dfrac{{ – {x^2}}}{{{{\left( {x + 1} \right)}^2} + 2}} \le 0\\ \Rightarrow B – 1 \le 0\\ \Rightarrow B \le 1\\ \text{Dấu bằng xảy ra}\Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\\\text{Vậy} MaxB = 1 \Leftrightarrow x = 0\end{array}$ Bình luận
Giải thích các bước giải:
+) Tìm GTNN:
Ta có:
$\begin{array}{l}
B + \dfrac{1}{2} = \dfrac{{2x + 3}}{{{x^2} + 2x + 3}} + \dfrac{1}{2}\\
= \dfrac{{{x^2} + 6x + 9}}{{2\left( {{x^2} + 2x + 3} \right)}}\\
= \dfrac{{{{\left( {x + 3} \right)}^2}}}{{2\left( {{{\left( {x + 1} \right)}^2} + 2} \right)}}\\
\text{Do}\left\{ \begin{array}{l}
{\left( {x + 3} \right)^2} \ge 0,\forall x\\
{\left( {x + 1} \right)^2} + 2 > 0,\forall x
\end{array} \right.\\
\Rightarrow \dfrac{{{{\left( {x + 3} \right)}^2}}}{{{{\left( {x + 1} \right)}^2} + 2}} \ge 0,\forall x\\
\Rightarrow B + \dfrac{1}{2} \ge 0\\
\Rightarrow B \ge \dfrac{{ – 1}}{2}\\
\text{Dấu bằng xảy ra} \Leftrightarrow {\left( {x + 3} \right)^2} = 0 \Leftrightarrow x = – 3\\
\text{Vậy}MinB = \dfrac{{ – 1}}{2} \Leftrightarrow x = – 3
\end{array}$
+) Tìm GTLN:
Ta có:
$\begin{array}{l}
B = \dfrac{{2x + 3}}{{{x^2} + 2x + 3}}\\
B – 1 = \dfrac{{2x + 3}}{{{x^2} + 2x + 3}} – 1\\
= \dfrac{{ – {x^2}}}{{{x^2} + 2x + 3}}\\
= \dfrac{{ – {x^2}}}{{{{\left( {x + 1} \right)}^2} + 2}}\\
\text{Do}\left\{ \begin{array}{l}
{x^2} \ge 0,\forall x\\
{\left( {x + 1} \right)^2} + 2 \ge 2 > 0,\forall x
\end{array} \right.\\
\Rightarrow \dfrac{{ – {x^2}}}{{{{\left( {x + 1} \right)}^2} + 2}} \le 0\\
\Rightarrow B – 1 \le 0\\
\Rightarrow B \le 1\\
\text{Dấu bằng xảy ra}\Leftrightarrow {x^2} = 0 \Leftrightarrow x = 0\\
\text{Vậy} MaxB = 1 \Leftrightarrow x = 0
\end{array}$