Tìm GTLN và GTNN (có cái gì thì tìm) `A=(2x+1)/(x^2+2x+2)` 03/12/2021 Bởi Ayla Tìm GTLN và GTNN (có cái gì thì tìm) `A=(2x+1)/(x^2+2x+2)`
Đáp án: $\begin{array}{l}A = \dfrac{{2x + 1}}{{{x^2} + 2x + 2}}\\ \Rightarrow A.{x^2} + 2.A.x + 2A = 2x + 1\\ \Rightarrow A.{x^2} + 2.\left( {A – 1} \right).x + 2A – 1 = 0\\ + Khi:A = 0 \Rightarrow x = – \dfrac{1}{2}\\ + Khi:A \ne 0\\\Delta ‘ \ge 0\\ \Rightarrow {\left( {A – 1} \right)^2} – A.\left( {2A – 1} \right) \ge 0\\ \Rightarrow {A^2} – 2A + 1 – 2{A^2} + A \ge 0\\ \Rightarrow {A^2} + A – 1 \le 0\\ \Rightarrow {A^2} + 2.A.\dfrac{1}{2} + \dfrac{1}{4} – \dfrac{5}{4} \le 0\\ \Rightarrow {\left( {A + \dfrac{1}{2}} \right)^2} \le \dfrac{5}{4}\\ \Rightarrow \dfrac{{ – \sqrt 5 – 1}}{2} \le A \le \dfrac{{\sqrt 5 – 1}}{2}\\ \Rightarrow \left\{ \begin{array}{l}GTLN:A = \dfrac{{\sqrt 5 – 1}}{2}\\GTNN:A = \dfrac{{ – \sqrt 5 – 1}}{2}\end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
A = \dfrac{{2x + 1}}{{{x^2} + 2x + 2}}\\
\Rightarrow A.{x^2} + 2.A.x + 2A = 2x + 1\\
\Rightarrow A.{x^2} + 2.\left( {A – 1} \right).x + 2A – 1 = 0\\
+ Khi:A = 0 \Rightarrow x = – \dfrac{1}{2}\\
+ Khi:A \ne 0\\
\Delta ‘ \ge 0\\
\Rightarrow {\left( {A – 1} \right)^2} – A.\left( {2A – 1} \right) \ge 0\\
\Rightarrow {A^2} – 2A + 1 – 2{A^2} + A \ge 0\\
\Rightarrow {A^2} + A – 1 \le 0\\
\Rightarrow {A^2} + 2.A.\dfrac{1}{2} + \dfrac{1}{4} – \dfrac{5}{4} \le 0\\
\Rightarrow {\left( {A + \dfrac{1}{2}} \right)^2} \le \dfrac{5}{4}\\
\Rightarrow \dfrac{{ – \sqrt 5 – 1}}{2} \le A \le \dfrac{{\sqrt 5 – 1}}{2}\\
\Rightarrow \left\{ \begin{array}{l}
GTLN:A = \dfrac{{\sqrt 5 – 1}}{2}\\
GTNN:A = \dfrac{{ – \sqrt 5 – 1}}{2}
\end{array} \right.
\end{array}$