Tìm GTLN và GTNN y = -2sin^2x + 3sinx – 1 26/07/2021 Bởi Lydia Tìm GTLN và GTNN y = -2sin^2x + 3sinx – 1
Đáp án: $\begin{array}{l}y = – 2{\sin ^2}x + 3\sin x – 1\\ = – 2.\left( {{{\sin }^2}x – \dfrac{3}{2}\sin x} \right) – 1\\ = – 2.\left( {{{\sin }^2}x – 2.\sin x.\dfrac{3}{4} + \dfrac{9}{{16}}} \right) + 2.\dfrac{9}{{16}} – 1\\ = – 2.{\left( {\sin x – \dfrac{3}{4}} \right)^2} + \dfrac{9}{8} – 1\\ = – 2.{\left( {\sin x – \dfrac{3}{4}} \right)^2} + \dfrac{1}{8}\\Do: – 1 \le \sin x \le 1\\ \Rightarrow – \dfrac{7}{4} \le \sin x – \dfrac{3}{4} \le \dfrac{1}{4}\\ \Rightarrow 0 \le {\left( {\sin x – \dfrac{3}{4}} \right)^2} \le \dfrac{{49}}{{16}}\\ \Rightarrow – \dfrac{{49}}{8} \le – 2{\left( {\sin x – \dfrac{3}{4}} \right)^2} \le 0\\ \Rightarrow – 6 \le – 2{\left( {\sin x – \dfrac{3}{4}} \right)^2} + \dfrac{1}{8} \le \dfrac{1}{8}\\ \Rightarrow – 6 \le y \le \dfrac{1}{8}\\ \Rightarrow \left\{ \begin{array}{l}GTNN:y = – 6\,\\Khi:sinx = – 1 \Rightarrow x = \dfrac{{ – \pi }}{2} + k2\pi \\GTLN:y = \dfrac{1}{8}\\Khi:sinx = 0 \Rightarrow x = k\pi \end{array} \right.\end{array}$ Bình luận
Đáp án:
$\begin{array}{l}
y = – 2{\sin ^2}x + 3\sin x – 1\\
= – 2.\left( {{{\sin }^2}x – \dfrac{3}{2}\sin x} \right) – 1\\
= – 2.\left( {{{\sin }^2}x – 2.\sin x.\dfrac{3}{4} + \dfrac{9}{{16}}} \right) + 2.\dfrac{9}{{16}} – 1\\
= – 2.{\left( {\sin x – \dfrac{3}{4}} \right)^2} + \dfrac{9}{8} – 1\\
= – 2.{\left( {\sin x – \dfrac{3}{4}} \right)^2} + \dfrac{1}{8}\\
Do: – 1 \le \sin x \le 1\\
\Rightarrow – \dfrac{7}{4} \le \sin x – \dfrac{3}{4} \le \dfrac{1}{4}\\
\Rightarrow 0 \le {\left( {\sin x – \dfrac{3}{4}} \right)^2} \le \dfrac{{49}}{{16}}\\
\Rightarrow – \dfrac{{49}}{8} \le – 2{\left( {\sin x – \dfrac{3}{4}} \right)^2} \le 0\\
\Rightarrow – 6 \le – 2{\left( {\sin x – \dfrac{3}{4}} \right)^2} + \dfrac{1}{8} \le \dfrac{1}{8}\\
\Rightarrow – 6 \le y \le \dfrac{1}{8}\\
\Rightarrow \left\{ \begin{array}{l}
GTNN:y = – 6\,\\
Khi:sinx = – 1 \Rightarrow x = \dfrac{{ – \pi }}{2} + k2\pi \\
GTLN:y = \dfrac{1}{8}\\
Khi:sinx = 0 \Rightarrow x = k\pi
\end{array} \right.
\end{array}$