Tìm GTNN x2 + 2021x 2x^2 – 4x +1 3x^2 – 2x

Tìm GTNN
x2 + 2021x
2x^2 – 4x +1
3x^2 – 2x

0 bình luận về “Tìm GTNN x2 + 2021x 2x^2 – 4x +1 3x^2 – 2x”

  1. `x^2 + 2021x`

    `=(4x^2+4.2021x+2021^2-2021^2)/4`

    `=((2x+2021)^2-2021^2)/4≥(-2021^2)/4`

    `”=”`xẩy ra khi :

    `2x+2021=0`

    `⇔x=(-2021)/2`

    `2x^2 – 4x +1`

    `=2(x^2-2x+1)-1`

    `=2(x-1)^2-1≥-1`

    `”=”`xẩy ra khi :

    `x-1=0`

    `⇔x=1`

    `3x^2 – 2x`

    `=(9x^2-6x+1-1)/3`

    `=((3x-1)^2-1)/3 ≥-1/3`

    `”=”`xẩy ra khi :

    `3x-1=0`

    `⇔x=1/3`

    Bình luận
  2. Giải thích các bước giải:

    a) $A=x^2+2021x$

           $=x^2+2.x.\dfrac{2021}{2}+\dfrac{4084441}{4}-\dfrac{4084441}{4}$

           $=\left(x+\dfrac{2021}{2}\right)^2-\dfrac{4084441}{4}\ge -\dfrac{4084441}{4}$

    $A\ge -\dfrac{4084441}{4}⇒A_{min}=-\dfrac{4084441}{4}$

    Dấu “=” xảy ra khi: 

    $x+\dfrac{2021}{2}=0$

    $⇔x=-\dfrac{2021}{2}$

    Vậy $A_{min}=-\dfrac{4084441}{4}$ khi $x=-\dfrac{2021}{2}$

    b) $B=2x^2-4x+1$

          $=2\left(x^2-2x+\dfrac{1}{2}\right)$

          $=2\left(x^2-2x+1-\dfrac{1}{2}\right)$

          $=2(x-1)^2-1\ge -1$

    $B\ge -1⇒B_{min}=-1$

    Dấu “=” xảy ra khi:

    $x-1=0$

    $⇒x=1$

    Vậy $B_{min}=-1$ khi $x=1$

    c) $C=3x^2-2x$

          $=3\left(x^2-\dfrac{2}{3}x\right)$

          $=3\left(x^2-2.x.\dfrac{1}{3}+\dfrac{1}{9}-\dfrac{1}{9}\right)$

          $=3\left(x-\dfrac{1}{3}\right)^2-\dfrac{1}{3}\ge -\dfrac{1}{3}$

    $C\ge -\dfrac{1}{3}⇒C_{min}=-\dfrac{1}{3}$

    Dấu “=” xảy ra khi:

    $x-\dfrac{1}{3}=0$

    $⇔x=\dfrac{1}{3}$

    Vậy $C_{min}=-\dfrac{1}{3}$ khi $x=\dfrac{1}{3}$.

    Bình luận

Viết một bình luận