Tìm GTNN A=(x ²+5x+5)((x+3)(x+2)+1) B=(x-1)(x-3)(x ²-4x+5) C=2x ²+2xy+y ²-2x+10y+5

Tìm GTNN
A=(x ²+5x+5)((x+3)(x+2)+1)
B=(x-1)(x-3)(x ²-4x+5)
C=2x ²+2xy+y ²-2x+10y+5

0 bình luận về “Tìm GTNN A=(x ²+5x+5)((x+3)(x+2)+1) B=(x-1)(x-3)(x ²-4x+5) C=2x ²+2xy+y ²-2x+10y+5”

  1. $A=(x^2+5x+5)[(x+3)(x+2)+1]$

    $=(x^2+5x+5)(x^2+5x+7)$
    $=(x^2+5x+6-1)(x^2+5x+6+1)$
    $=(x^2+5x+6)^2-1≥-1$ do $(x^2+5x+6)^2≥0$

    Dấu = xảy ra

    $⇔x^2+5x+6=0⇔x^2+2x+3x+6=0⇔(x+3)(x+2)=0$

    $⇔$\(\left[ \begin{array}{l}x+3=0\\x+2=0\end{array} \right.\) 

    $⇔$\(\left[ \begin{array}{l}x=-3\\x=-2\end{array} \right.\) 

    $B=(x-1)(x-3)(x^2-4x+5)$
    $=(x^2-4x+3)(x^2-4x+5)$
    $=(x^2-4x+4-1)(x^2-4x+4+1)$

    $=(x^2-4x+4)^2-1≥-1$ do $(x^2-4x+4)^2≥0$

    Dấu $=$ xảy ra $⇔x^2-4x+4⇔(x-2)^2=0⇔x-2=0⇔x=2$

    $C=2x^2+2xy+y^2-2x+10y+5$

     $=y^2+2y(x+5)+(x^2+10x+25)+x^2-12x+36-56$

    $=y^2+2y(x+5)+(x+5)^2+(x-6)^2-56$

    $=(y+x+5)^2+(x-6)^2-56≥-56$ do $(y+x+5)^2;(x-6)^2≥0$

    Dấu $=$ xảy ra $⇔y+x+5=0;x-6=0⇔y+6+5=0;x=6⇔y=-11;x=6$

    Bình luận
  2. $A=(x^2+5x+5)[(x+3)(x+2)+1]$

    $=(x^2+5x+5)(x^2+5x+7)$

    $=(x^2+5x+6-1)(x^2+5x+6+1)$

    $=(x^2+5x+6)^2-1≥-1$ do $(x^2+5x+6)^2≥0$

    Dấu “=” xảy ra

    $⇔x^2+5x+6=0⇔x^2+2x+3x+6=0⇔(x+3)(x+2)=0$

    $⇔$\(\left[ \begin{array}{l}x+3=0\\x+2=0\end{array} \right.\) 

    $⇔$\(\left[ \begin{array}{l}x=-3\\x=-2\end{array} \right.\) 

    $B=(x-1)(x-3)(x^2-4x+5)$

    $=(x^2-4x+3)(x^2-4x+5)$

    $=(x^2-4x+4-1)(x^2-4x+4+1)$

    $=(x^2-4x+4)^2-1≥-1$ do $(x^2-4x+4)^2≥0$

    Dấu $=$ xảy ra $⇔x^2-4x+4$

    `⇔(x-2)^2=0`

    `⇔x-2=0`

    `⇔x=2`

    $C=2x^2+2xy+y^2-2x+10y+5$

      $=y^2+2y(x+5)+(x^2+10x+25)+x^2-12x+36-56$

      $=y^2+2y(x+5)+(x+5)^2+(x-6)^2-56$

      $=(y+x+5)^2+(x-6)^2-56≥-56$ do $(y+x+5)^2;(x-6)^2≥0$

    Dấu $=$ xảy ra $⇔y+x+5=0;x-6=0$

    `⇔y+6+5=0;x=6`

    `⇔y=-11;x=6`

    Bình luận

Viết một bình luận