tìm GTNN B= -5 + ( x- 1/2 )^2 E= |x| + |x-1| + |x-2| ….|x-98| + |x-99|

tìm GTNN
B= -5 + ( x- 1/2 )^2
E= |x| + |x-1| + |x-2| ….|x-98| + |x-99|

0 bình luận về “tìm GTNN B= -5 + ( x- 1/2 )^2 E= |x| + |x-1| + |x-2| ….|x-98| + |x-99|”

  1. Đáp án:

    `B=-5+(x-1/2)^2`

    Vì `(x-1/2)^2>=0`

    `=>(x-1/2)^2-5>=-5`

    Hay `B>=-5`

    Dấu “=” xảy ra khi `x-1/2=0<=>x=1/2`.

    Vậy `min_B=-5<=>x=1/2`

    `E=|x|+|x-1|+|x-2|+….|x-98|+|x-99|`

    `=(|x|+|99-x|)+(|x-1|+|98-x|)+…..+(|x-49|+|50-x|)`

    Áp dụng bđt `|A|+|B|>=|A+B|`

    `=>|x|+|99-x|>=|x+99-x|=99`

    `|x-1|+|98-x|>=|x-1+98-x|=97`

    `………………………………………………`

    `|x-49|+|50-x|>=1`

    `=>E>=99+97+……………..+1`

    `=>E>=((99+1).99)/2=4950`.

    Dấu “=” xảy ra khi:\(\begin{cases}x(99-x) \ge 0\\(x-1)(98-x) \ge 0\\(x-49)(50-x) \ge 0\\\end{cases}\)

    `<=>` \(\begin{cases}x(x-99) \le 0\\(x-1)(x-98) \le 0\\…………….\\(x-49)(x-50) \le 0\\\end{cases}\)

    `<=>` \(\begin{cases}0 \le x \le 99\\1 \le x \le 98\\…………..\\49 \le x \le 50\\\end{cases}\)

    `<=>49<=x<=50`.

    Bình luận
  2. `B = -5 + (x – 1/2)^2`

    Ta có: `(x – 1/2)^2 ≥ 0 ∀x`

    `=> (x – 1/2)^2 – 5 ≥ -5`

    Dấu “=” xảy ra khi `(x – 1/2)^2 = 0`

    `=> x – 1/2 = 0`

    `=> x = 1/2`

    Vậy MinB = -5 tại `x = 1/2`.

    `E = |x| + |x – 1| + … + |x – 99|`

    `= (|x| + |x – 99|) + (|x – 1| + |x – 98|) + … + (|x – 49| + |x – 50|)`

    `= (|x| + |99 – x|) + (|x – 1| + |98 – x|) + … + (|x – 49| + |50 – x|)`

    `=> D ≥ |x + 99 – x| + |x – 1 + 98 – x| + … + |x – 49 + 50 – x|`

    `D ≥ 99 + 97 + … + 1`

    `D ≥ (1 + 99) . 50 : 2 = 2500`

    Dấu “=” xảy ra khi `x (99 – x) ≥ 0 ; (x – 1) (98 – x) ≥ 0 ; … ; (x – 49) (50 – x) ≥ 0`

    `=> x (x – 99) ≤ 0 ; (x – 1) (x – 98) ≤ 0 ; … ; (x – 49) (x – 50) ≤ 0`

    `=> 0 ≤ x ≤ 99 ; 1 ≤ x ≤ 98 ; … ; 49 ≤ x ≤ 50`

    `=> 49 ≤ x ≤ 50`

    Vậy MinE = 2500 tại `49 ≤ x ≤ 50`.

    Bình luận

Viết một bình luận