Tìm GTNN của: a) (x² + 3x 2)(x² + 7x + 12) b) x² + xy + y² – 3x – 3y 14/07/2021 Bởi Everleigh Tìm GTNN của: a) (x² + 3x 2)(x² + 7x + 12) b) x² + xy + y² – 3x – 3y
Đáp án: a) $MinA = – 1 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ – 5 + \sqrt 5 }}{2}\\x = \dfrac{{ – 5 – \sqrt 5 }}{2}\end{array} \right.$ b) $MinB = – 3 \Leftrightarrow \left( {x;y} \right) = \left( {1;1} \right)$ Giải thích các bước giải: $\begin{array}{l}a)A = \left( {{x^2} + 3x + 2} \right)\left( {{x^2} + 7x + 12} \right)\\ = \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right)\\ = \left( {x + 1} \right)\left( {x + 4} \right)\left( {x + 2} \right)\left( {x + 3} \right)\\ = \left( {{x^2} + 5x + 4} \right)\left( {{x^2} + 5x + 6} \right)\\ = {\left( {{x^2} + 5x} \right)^2} + 10\left( {{x^2} + 5x} \right) + 24\\ = {\left( {{x^2} + 5x} \right)^2} + 10\left( {{x^2} + 5x} \right) + 25 – 1\\ = {\left( {{x^2} + 5x + 5} \right)^2} – 1\end{array}$ Mà ta có: $\begin{array}{l}{\left( {{x^2} + 5x + 5} \right)^2} \ge 0,\forall x\\ \Rightarrow A = {\left( {{x^2} + 5x + 5} \right)^2} – 1 \ge – 1,\forall x\end{array}$ Dấu bằng xảy ra $\begin{array}{l} \Leftrightarrow {\left( {{x^2} + 5x + 5} \right)^2} = 0\\ \Leftrightarrow {x^2} + 5x + 5 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ – 5 + \sqrt 5 }}{2}\\x = \dfrac{{ – 5 – \sqrt 5 }}{2}\end{array} \right.\end{array}$ Vậy $MinA = – 1 \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{{ – 5 + \sqrt 5 }}{2}\\x = \dfrac{{ – 5 – \sqrt 5 }}{2}\end{array} \right.$ b) Ta có: $\begin{array}{l}B = {x^2} + xy + {y^2} – 3x – 3y\\ = {x^2} + x\left( {y – 3} \right) + {y^2} – 3y\\ = {x^2} + 2.x.\dfrac{{y – 3}}{2} + \dfrac{1}{4}{\left( {y – 3} \right)^2} + \dfrac{3}{4}{y^2} – \dfrac{3}{2}y – \dfrac{9}{4}\\ = {\left( {x + \dfrac{{y – 3}}{2}} \right)^2} + \dfrac{3}{4}\left( {{y^2} – 2y + 1} \right) – 3\\ = {\left( {x + \dfrac{{y – 3}}{2}} \right)^2} + \dfrac{3}{4}{\left( {y – 1} \right)^2} – 3\end{array}$ Lại có: $\begin{array}{l}\left\{ \begin{array}{l}{\left( {x + \dfrac{{y – 3}}{2}} \right)^2} \ge 0\\{\left( {y – 1} \right)^2} \ge 0\end{array} \right.,\forall x,y\\ \Rightarrow {\left( {x + \dfrac{{y – 3}}{2}} \right)^2} + \dfrac{3}{4}{\left( {y – 1} \right)^2} – 3 \ge – 3,\forall x,y\\ \Rightarrow B \ge – 3,\forall x,y\end{array}$ Dấu bằng xảy ra $\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}{\left( {x + \dfrac{{y – 3}}{2}} \right)^2} = 0\\{\left( {y – 1} \right)^2} = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}x + \dfrac{{y – 3}}{2} = 0\\y – 1 = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}y = 1\\x = 1\end{array} \right.\end{array}$ Vậy $MinB = – 3 \Leftrightarrow \left( {x;y} \right) = \left( {1;1} \right)$ Bình luận
Đáp án:
a) $MinA = – 1 \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{ – 5 + \sqrt 5 }}{2}\\
x = \dfrac{{ – 5 – \sqrt 5 }}{2}
\end{array} \right.$
b) $MinB = – 3 \Leftrightarrow \left( {x;y} \right) = \left( {1;1} \right)$
Giải thích các bước giải:
$\begin{array}{l}
a)A = \left( {{x^2} + 3x + 2} \right)\left( {{x^2} + 7x + 12} \right)\\
= \left( {x + 1} \right)\left( {x + 2} \right)\left( {x + 3} \right)\left( {x + 4} \right)\\
= \left( {x + 1} \right)\left( {x + 4} \right)\left( {x + 2} \right)\left( {x + 3} \right)\\
= \left( {{x^2} + 5x + 4} \right)\left( {{x^2} + 5x + 6} \right)\\
= {\left( {{x^2} + 5x} \right)^2} + 10\left( {{x^2} + 5x} \right) + 24\\
= {\left( {{x^2} + 5x} \right)^2} + 10\left( {{x^2} + 5x} \right) + 25 – 1\\
= {\left( {{x^2} + 5x + 5} \right)^2} – 1
\end{array}$
Mà ta có:
$\begin{array}{l}
{\left( {{x^2} + 5x + 5} \right)^2} \ge 0,\forall x\\
\Rightarrow A = {\left( {{x^2} + 5x + 5} \right)^2} – 1 \ge – 1,\forall x
\end{array}$
Dấu bằng xảy ra
$\begin{array}{l}
\Leftrightarrow {\left( {{x^2} + 5x + 5} \right)^2} = 0\\
\Leftrightarrow {x^2} + 5x + 5 = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{ – 5 + \sqrt 5 }}{2}\\
x = \dfrac{{ – 5 – \sqrt 5 }}{2}
\end{array} \right.
\end{array}$
Vậy $MinA = – 1 \Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{{ – 5 + \sqrt 5 }}{2}\\
x = \dfrac{{ – 5 – \sqrt 5 }}{2}
\end{array} \right.$
b) Ta có:
$\begin{array}{l}
B = {x^2} + xy + {y^2} – 3x – 3y\\
= {x^2} + x\left( {y – 3} \right) + {y^2} – 3y\\
= {x^2} + 2.x.\dfrac{{y – 3}}{2} + \dfrac{1}{4}{\left( {y – 3} \right)^2} + \dfrac{3}{4}{y^2} – \dfrac{3}{2}y – \dfrac{9}{4}\\
= {\left( {x + \dfrac{{y – 3}}{2}} \right)^2} + \dfrac{3}{4}\left( {{y^2} – 2y + 1} \right) – 3\\
= {\left( {x + \dfrac{{y – 3}}{2}} \right)^2} + \dfrac{3}{4}{\left( {y – 1} \right)^2} – 3
\end{array}$
Lại có:
$\begin{array}{l}
\left\{ \begin{array}{l}
{\left( {x + \dfrac{{y – 3}}{2}} \right)^2} \ge 0\\
{\left( {y – 1} \right)^2} \ge 0
\end{array} \right.,\forall x,y\\
\Rightarrow {\left( {x + \dfrac{{y – 3}}{2}} \right)^2} + \dfrac{3}{4}{\left( {y – 1} \right)^2} – 3 \ge – 3,\forall x,y\\
\Rightarrow B \ge – 3,\forall x,y
\end{array}$
Dấu bằng xảy ra
$\begin{array}{l}
\Leftrightarrow \left\{ \begin{array}{l}
{\left( {x + \dfrac{{y – 3}}{2}} \right)^2} = 0\\
{\left( {y – 1} \right)^2} = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
x + \dfrac{{y – 3}}{2} = 0\\
y – 1 = 0
\end{array} \right.\\
\Leftrightarrow \left\{ \begin{array}{l}
y = 1\\
x = 1
\end{array} \right.
\end{array}$
Vậy $MinB = – 3 \Leftrightarrow \left( {x;y} \right) = \left( {1;1} \right)$