Tìm GTNN hoặc GTLN a) C = ( x^2 – 2x + 2021) / x^2 b) D = ( x^2 – 2x + 2015 ) / 2015x^2

Tìm GTNN hoặc GTLN
a) C = ( x^2 – 2x + 2021) / x^2
b) D = ( x^2 – 2x + 2015 ) / 2015x^2

0 bình luận về “Tìm GTNN hoặc GTLN a) C = ( x^2 – 2x + 2021) / x^2 b) D = ( x^2 – 2x + 2015 ) / 2015x^2”

  1. Đáp án:

     a) \(Min = \dfrac{{2020}}{{2021}}\)

    Giải thích các bước giải:

    \(\begin{array}{l}
    a)C = \dfrac{{{x^2} – 2x + 2021}}{{{x^2}}}\\
     = 1 – \dfrac{2}{x} + \dfrac{{2021}}{{{x^2}}}\\
    Đặt:\dfrac{1}{x} = t\\
     \to C = 1 – 2t + 2021{t^2}\\
     = 2021{t^2} – 2.t\sqrt {2021} .\dfrac{1}{{\sqrt {2021} }} + \dfrac{1}{{2021}} + \dfrac{{2020}}{{2021}}\\
     = {\left( {t\sqrt {2021}  – \dfrac{1}{{\sqrt {2021} }}} \right)^2} + \dfrac{{2020}}{{2021}}\\
    Do:{\left( {t\sqrt {2021}  – \dfrac{1}{{\sqrt {2021} }}} \right)^2} \ge 0\forall t\\
     \to {\left( {t\sqrt {2021}  – \dfrac{1}{{\sqrt {2021} }}} \right)^2} + \dfrac{{2020}}{{2021}} \ge \dfrac{{2020}}{{2021}}\\
     \to Min = \dfrac{{2020}}{{2021}}\\
     \Leftrightarrow t\sqrt {2021}  – \dfrac{1}{{\sqrt {2021} }} = 0\\
     \to t = \dfrac{1}{{2021}}\\
     \to \dfrac{1}{x} = \dfrac{1}{{2021}}\\
     \to x = 2021\\
    b)D = \dfrac{{{x^2} – 2x + 2015}}{{2015{x^2}}}\\
     = \dfrac{1}{{2015}} – \dfrac{2}{{2015x}} + \dfrac{1}{{{x^2}}}\\
    Đặt:\dfrac{1}{x} = t\\
     \to D = {t^2} – 2.t.\dfrac{1}{{2015}} + \dfrac{1}{{{{2015}^2}}} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\
     = {\left( {t – \dfrac{1}{{2015}}} \right)^2} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\
    Do:{\left( {t – \dfrac{1}{{2015}}} \right)^2} \ge 0\forall t\\
     \to {\left( {t – \dfrac{1}{{2015}}} \right)^2} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}} \ge \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\
     \to Min = \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\
     \Leftrightarrow t = \dfrac{1}{{2015}}\\
     \to \dfrac{1}{x} = \dfrac{1}{{2015}}\\
     \to x = 2015
    \end{array}\)

    Bình luận

Viết một bình luận