Tìm GTNN hoặc GTLN a) C = ( x^2 – 2x + 2021) / x^2 b) D = ( x^2 – 2x + 2015 ) / 2015x^2 28/08/2021 Bởi Sarah Tìm GTNN hoặc GTLN a) C = ( x^2 – 2x + 2021) / x^2 b) D = ( x^2 – 2x + 2015 ) / 2015x^2
Đáp án: a) \(Min = \dfrac{{2020}}{{2021}}\) Giải thích các bước giải: \(\begin{array}{l}a)C = \dfrac{{{x^2} – 2x + 2021}}{{{x^2}}}\\ = 1 – \dfrac{2}{x} + \dfrac{{2021}}{{{x^2}}}\\Đặt:\dfrac{1}{x} = t\\ \to C = 1 – 2t + 2021{t^2}\\ = 2021{t^2} – 2.t\sqrt {2021} .\dfrac{1}{{\sqrt {2021} }} + \dfrac{1}{{2021}} + \dfrac{{2020}}{{2021}}\\ = {\left( {t\sqrt {2021} – \dfrac{1}{{\sqrt {2021} }}} \right)^2} + \dfrac{{2020}}{{2021}}\\Do:{\left( {t\sqrt {2021} – \dfrac{1}{{\sqrt {2021} }}} \right)^2} \ge 0\forall t\\ \to {\left( {t\sqrt {2021} – \dfrac{1}{{\sqrt {2021} }}} \right)^2} + \dfrac{{2020}}{{2021}} \ge \dfrac{{2020}}{{2021}}\\ \to Min = \dfrac{{2020}}{{2021}}\\ \Leftrightarrow t\sqrt {2021} – \dfrac{1}{{\sqrt {2021} }} = 0\\ \to t = \dfrac{1}{{2021}}\\ \to \dfrac{1}{x} = \dfrac{1}{{2021}}\\ \to x = 2021\\b)D = \dfrac{{{x^2} – 2x + 2015}}{{2015{x^2}}}\\ = \dfrac{1}{{2015}} – \dfrac{2}{{2015x}} + \dfrac{1}{{{x^2}}}\\Đặt:\dfrac{1}{x} = t\\ \to D = {t^2} – 2.t.\dfrac{1}{{2015}} + \dfrac{1}{{{{2015}^2}}} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\ = {\left( {t – \dfrac{1}{{2015}}} \right)^2} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\Do:{\left( {t – \dfrac{1}{{2015}}} \right)^2} \ge 0\forall t\\ \to {\left( {t – \dfrac{1}{{2015}}} \right)^2} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}} \ge \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\ \to Min = \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\ \Leftrightarrow t = \dfrac{1}{{2015}}\\ \to \dfrac{1}{x} = \dfrac{1}{{2015}}\\ \to x = 2015\end{array}\) Bình luận
Đáp án:
a) \(Min = \dfrac{{2020}}{{2021}}\)
Giải thích các bước giải:
\(\begin{array}{l}
a)C = \dfrac{{{x^2} – 2x + 2021}}{{{x^2}}}\\
= 1 – \dfrac{2}{x} + \dfrac{{2021}}{{{x^2}}}\\
Đặt:\dfrac{1}{x} = t\\
\to C = 1 – 2t + 2021{t^2}\\
= 2021{t^2} – 2.t\sqrt {2021} .\dfrac{1}{{\sqrt {2021} }} + \dfrac{1}{{2021}} + \dfrac{{2020}}{{2021}}\\
= {\left( {t\sqrt {2021} – \dfrac{1}{{\sqrt {2021} }}} \right)^2} + \dfrac{{2020}}{{2021}}\\
Do:{\left( {t\sqrt {2021} – \dfrac{1}{{\sqrt {2021} }}} \right)^2} \ge 0\forall t\\
\to {\left( {t\sqrt {2021} – \dfrac{1}{{\sqrt {2021} }}} \right)^2} + \dfrac{{2020}}{{2021}} \ge \dfrac{{2020}}{{2021}}\\
\to Min = \dfrac{{2020}}{{2021}}\\
\Leftrightarrow t\sqrt {2021} – \dfrac{1}{{\sqrt {2021} }} = 0\\
\to t = \dfrac{1}{{2021}}\\
\to \dfrac{1}{x} = \dfrac{1}{{2021}}\\
\to x = 2021\\
b)D = \dfrac{{{x^2} – 2x + 2015}}{{2015{x^2}}}\\
= \dfrac{1}{{2015}} – \dfrac{2}{{2015x}} + \dfrac{1}{{{x^2}}}\\
Đặt:\dfrac{1}{x} = t\\
\to D = {t^2} – 2.t.\dfrac{1}{{2015}} + \dfrac{1}{{{{2015}^2}}} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\
= {\left( {t – \dfrac{1}{{2015}}} \right)^2} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\
Do:{\left( {t – \dfrac{1}{{2015}}} \right)^2} \ge 0\forall t\\
\to {\left( {t – \dfrac{1}{{2015}}} \right)^2} + \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}} \ge \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\
\to Min = \dfrac{1}{{2015}} – \dfrac{1}{{{{2015}^2}}}\\
\Leftrightarrow t = \dfrac{1}{{2015}}\\
\to \dfrac{1}{x} = \dfrac{1}{{2015}}\\
\to x = 2015
\end{array}\)