Tìm gtnn hoặc gtln của biểu thức sau A,2x^2+2y^2+2xy-8x-10y+2025 B, 2x^2+2y^2+2xy-14x-16y+2020 “Hoặc ” nha các bạn

Tìm gtnn hoặc gtln của biểu thức sau
A,2x^2+2y^2+2xy-8x-10y+2025
B, 2x^2+2y^2+2xy-14x-16y+2020
“Hoặc ” nha các bạn

0 bình luận về “Tìm gtnn hoặc gtln của biểu thức sau A,2x^2+2y^2+2xy-8x-10y+2025 B, 2x^2+2y^2+2xy-14x-16y+2020 “Hoặc ” nha các bạn”

  1. Đáp án:

    a. Không tồn tại giá trị x và y để phương trình có GTNN

    Giải thích các bước giải:

    \(\begin{array}{l}
    a.2{x^2} + 2{y^2} + 2xy – 8x – 10y + 2025\\
     = {x^2} + {y^2} + 4 + 2xy + 2.x.\left( { – 2} \right) + 2.y.\left( { – 2} \right) + {x^2} – 4x + 4 + {y^2} – 6y + 9 + 2008\\
     = {\left( {x + y – 2} \right)^2} + {\left( {x – 2} \right)^2} + {\left( {y – 3} \right)^2} + 2008\\
    Do:\left\{ \begin{array}{l}
    {\left( {x + y – 2} \right)^2} \ge 0\\
    {\left( {x – 2} \right)^2} \ge 0\\
    {\left( {y – 3} \right)^2} \ge 0
    \end{array} \right.\forall x;y \in R\\
     \to {\left( {x + y – 2} \right)^2} + {\left( {x – 2} \right)^2} + {\left( {y – 3} \right)^2} \ge 0\\
     \to {\left( {x + y – 2} \right)^2} + {\left( {x – 2} \right)^2} + {\left( {y – 3} \right)^2} + 2008 \ge 2008\\
     \to Min = 2008\\
     \Leftrightarrow \left\{ \begin{array}{l}
    x + y – 2 = 0\\
    x = 2\\
    y = 3
    \end{array} \right.\left( {vô lý} \right)
    \end{array}\)

    ⇒ Không tồn tại giá trị x và y để phương trình có GTNN

    \(\begin{array}{l}
    b.2{x^2} + 2{y^2} + 2xy – 14x – 16y + 2020\\
     = {x^2} + {y^2} + 4 + 2xy + 2.x.\left( { – 2} \right) + 2y.\left( { – 2} \right) + {x^2} – 10x + 25 + {y^2} – 12y + 36 + 1955\\
     = {\left( {x + y – 2} \right)^2} + {\left( {x – 5} \right)^2} + {\left( {y – 6} \right)^2} + 1955\\
    Do:{\left( {x + y – 2} \right)^2} + {\left( {x – 5} \right)^2} + {\left( {y – 6} \right)^2} \ge 0\forall x;y \in R\\
     \to {\left( {x + y – 2} \right)^2} + {\left( {x – 5} \right)^2} + {\left( {y – 6} \right)^2} + 1955 \ge 1955\\
     \to Min = 1955\\
     \Leftrightarrow \left\{ \begin{array}{l}
    x + y – 2 = 0\\
    x = 5\\
    y = 6
    \end{array} \right.\left( {vô lý} \right)
    \end{array}\)

    ⇒ Không tồn tại giá trị x và y để phương trình có GTNN

    Bình luận

Viết một bình luận