Tìm hệ số của x^3 y^7 trong khai triển nhị thức (2x-y)^10 26/07/2021 Bởi Delilah Tìm hệ số của x^3 y^7 trong khai triển nhị thức (2x-y)^10
Đáp án: \[ – 960\] Giải thích các bước giải: Ta có: \[{\left( {2x – y} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k.{{\left( {2x} \right)}^{10 – k}}.{{\left( { – y} \right)}^k} = \sum\limits_{k = 0}^{10} {C_{10}^k{{.2}^{10 – k}}.{{\left( { – 1} \right)}^k}.{x^{10 – k}}.{y^k}} } \] Suy ra hệ số của \({x^3}{y^7}\) là hệ số trong khai triển với \(k = 3\). Do đó, hệ số của \({x^3}{y^7}\) trong khai triển là: \[C_{10}^7{.2^3}.{\left( { – 1} \right)^7} = – 960\] Bình luận
Đáp án:
\[ – 960\]
Giải thích các bước giải:
Ta có:
\[{\left( {2x – y} \right)^{10}} = \sum\limits_{k = 0}^{10} {C_{10}^k.{{\left( {2x} \right)}^{10 – k}}.{{\left( { – y} \right)}^k} = \sum\limits_{k = 0}^{10} {C_{10}^k{{.2}^{10 – k}}.{{\left( { – 1} \right)}^k}.{x^{10 – k}}.{y^k}} } \]
Suy ra hệ số của \({x^3}{y^7}\) là hệ số trong khai triển với \(k = 3\).
Do đó, hệ số của \({x^3}{y^7}\) trong khai triển là:
\[C_{10}^7{.2^3}.{\left( { – 1} \right)^7} = – 960\]