tìm m>0 để y= (x^2 + m bình x +2m^2 -5m+3)/x đạt cực tiểu tại x thuộc (0,2m)

tìm m>0 để y= (x^2 + m bình x +2m^2 -5m+3)/x đạt cực tiểu tại x thuộc (0,2m)

0 bình luận về “tìm m>0 để y= (x^2 + m bình x +2m^2 -5m+3)/x đạt cực tiểu tại x thuộc (0,2m)”

  1. Đáp án: $m>\dfrac32$ hoặc $\dfrac12<m<1$

    Giải thích các bước giải:

    Ta có:

    $y=\dfrac{x^2+m^2x+2m^2-5m+3}{x}$

    $\to y’=\dfrac{(2x+m^2)\cdot x-(x^2+m^2x+2m^2-5m+3)\cdot 1}{x^2}$

    $\to y’=\dfrac{x^2-2m^2+5m-3}{x^2}$

    Để $y$ đạt cực tiểu tại $x\in (0,2m)$

    $\to x^2-2m^2+5m-3=0$ có nghiệm $x\in (0,2m)$

    $\to x^2=2m^2-5m+3$

    Mà $x\in (0,2m)$

    $\to x^2\in (0,4m^2)$
    $\to 0<2m^2-5m+3<4m^2$

    Ta có $0<2m^2-5m+3$

    $\to (m-1)(2m-3)>0$

    $\to m<1$ hoặc $m>\dfrac32(1)$

    Lại có :

    $2m^2-5m+3<4m^2$

    $\to 2m^2+5m-3>0$

    $\to (2m-1)(m+3)>0$

    $\to m>\dfrac12$ hoặc $m<-3(2)$

    Kết hợp $m>0, (1),(2)$

    $\to m>\dfrac32$ hoặc $\dfrac12<m<1$

    Bình luận

Viết một bình luận