Tìm m để $x^{2}$ – 2mx + m-1 = 0 có 2 nghiệm $x_{1}$, $x_{2}$ thỏa mãn 3$x_{1}$ + 5$x_{2}$ = $\frac{17m}{3}$ 05/10/2021 Bởi Kaylee Tìm m để $x^{2}$ – 2mx + m-1 = 0 có 2 nghiệm $x_{1}$, $x_{2}$ thỏa mãn 3$x_{1}$ + 5$x_{2}$ = $\frac{17m}{3}$
Đáp án: \(\left[ \begin{array}{l}m = – 12\\m = \dfrac{{12}}{{13}}\end{array} \right.\) Giải thích các bước giải: Để phương trình có 2 nghiệm $x_1,x_2$ ⇒Δ’≥0 \(\begin{array}{l} \to {m^2} – 4m + 4 ≥ 0\\ \to {\left( {m – 2} \right)^2} ≥ 0(ld)\\ \to \left[ \begin{array}{l}x = m + \sqrt {{{\left( {m – 2} \right)}^2}} \\x = m – \sqrt {{{\left( {m – 2} \right)}^2}} \end{array} \right.\\ \to \left[ \begin{array}{l}x = m + m – 2\\x = m – m + 2\end{array} \right.\\ \to \left[ \begin{array}{l}x = 2m – 2\\x = 2\end{array} \right.\\Có:3{x_1} + 5{x_2} = \dfrac{{17m}}{3}\\ \to \left[ \begin{array}{l}3\left( {2m – 2} \right) + 5.2 = \dfrac{{17m}}{3}\\3.2 + 5\left( {2m – 2} \right) = \dfrac{{17m}}{3}\end{array} \right.\\ \to \left[ \begin{array}{l}6m – 6 + 10 = \dfrac{{17m}}{3}\\6 + 10m – 10 = \dfrac{{17m}}{3}\end{array} \right.\\ \to \left[ \begin{array}{l}\dfrac{1}{3}m = – 4\\\dfrac{{13}}{3}m = 4\end{array} \right.\\ \to \left[ \begin{array}{l}m = – 12\\m = \dfrac{{12}}{{13}}\end{array} \right.\end{array}\) Bình luận
Đáp án:
\(\left[ \begin{array}{l}
m = – 12\\
m = \dfrac{{12}}{{13}}
\end{array} \right.\)
Giải thích các bước giải:
Để phương trình có 2 nghiệm $x_1,x_2$
⇒Δ’≥0
\(\begin{array}{l}
\to {m^2} – 4m + 4 ≥ 0\\
\to {\left( {m – 2} \right)^2} ≥ 0(ld)\\
\to \left[ \begin{array}{l}
x = m + \sqrt {{{\left( {m – 2} \right)}^2}} \\
x = m – \sqrt {{{\left( {m – 2} \right)}^2}}
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = m + m – 2\\
x = m – m + 2
\end{array} \right.\\
\to \left[ \begin{array}{l}
x = 2m – 2\\
x = 2
\end{array} \right.\\
Có:3{x_1} + 5{x_2} = \dfrac{{17m}}{3}\\
\to \left[ \begin{array}{l}
3\left( {2m – 2} \right) + 5.2 = \dfrac{{17m}}{3}\\
3.2 + 5\left( {2m – 2} \right) = \dfrac{{17m}}{3}
\end{array} \right.\\
\to \left[ \begin{array}{l}
6m – 6 + 10 = \dfrac{{17m}}{3}\\
6 + 10m – 10 = \dfrac{{17m}}{3}
\end{array} \right.\\
\to \left[ \begin{array}{l}
\dfrac{1}{3}m = – 4\\
\dfrac{{13}}{3}m = 4
\end{array} \right.\\
\to \left[ \begin{array}{l}
m = – 12\\
m = \dfrac{{12}}{{13}}
\end{array} \right.
\end{array}\)