Tìm m để hàm số y=x^3-3(m+1)x^2-mx+2 luôn đồng biến trên tập xác định của nó. 07/09/2021 Bởi aikhanh Tìm m để hàm số y=x^3-3(m+1)x^2-mx+2 luôn đồng biến trên tập xác định của nó.
Đáp án: $\dfrac{-\sqrt{13}-7}{6}<m<\dfrac{\sqrt{13}-7}{6}$ Giải thích các bước giải: Ta có hàm số $y=x^3-3(m+1)x^2-mx+2$ đồng biến trên $R$ Ta có: $y’=3x^2-6(m+1)x-m$ $\to$Để hàm số luôn đồng biến trên tập xác định của nó: $\to y’>0,\quad\forall x\in R$ $\to 3x^2-6(m+1)x-m>0,\quad\forall x\in R$ $\to \begin{cases}3>0\\ \Delta’=(-3(m+1))^2-3\cdot (-m)<0\end{cases}$ $\to (-3(m+1))^2-3\cdot (-m)<0$ $\to 9m^2+21m+9<0$ $\to 3m^2+7m+3<0$ $\to 3\left(m+\dfrac{7}{6}\right)^2-\dfrac{13}{12}<0$ $\to 3\left(m+\dfrac{7}{6}\right)^2<\dfrac{13}{12}$ $\to \left(m+\dfrac{7}{6}\right)^2<\dfrac{13}{36}$ $\to \dfrac{-\sqrt{13}-7}{6}<m<\dfrac{\sqrt{13}-7}{6}$ Bình luận
Đáp án: $\dfrac{-\sqrt{13}-7}{6}<m<\dfrac{\sqrt{13}-7}{6}$
Giải thích các bước giải:
Ta có hàm số $y=x^3-3(m+1)x^2-mx+2$ đồng biến trên $R$
Ta có:
$y’=3x^2-6(m+1)x-m$
$\to$Để hàm số luôn đồng biến trên tập xác định của nó:
$\to y’>0,\quad\forall x\in R$
$\to 3x^2-6(m+1)x-m>0,\quad\forall x\in R$
$\to \begin{cases}3>0\\ \Delta’=(-3(m+1))^2-3\cdot (-m)<0\end{cases}$
$\to (-3(m+1))^2-3\cdot (-m)<0$
$\to 9m^2+21m+9<0$
$\to 3m^2+7m+3<0$
$\to 3\left(m+\dfrac{7}{6}\right)^2-\dfrac{13}{12}<0$
$\to 3\left(m+\dfrac{7}{6}\right)^2<\dfrac{13}{12}$
$\to \left(m+\dfrac{7}{6}\right)^2<\dfrac{13}{36}$
$\to \dfrac{-\sqrt{13}-7}{6}<m<\dfrac{\sqrt{13}-7}{6}$