Tìm m để hàm số y=mx^4+2(m-4)x^2 có 2 cực đại và 1 cực tiểu mọi người ơi giúp mình với 10/08/2021 Bởi Faith Tìm m để hàm số y=mx^4+2(m-4)x^2 có 2 cực đại và 1 cực tiểu mọi người ơi giúp mình với
Đáp án: m<0 Giải thích các bước giải: Ta có: \(y’ = 4m{x^3} + 4\left( {m – 4} \right)x = 4x\left( {m{x^2} + m – 4} \right)\) \(y’ = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\m{x^2} = 4 – m\end{array} \right.\) Hàm số có hai điểm cực đại và 1 điểm cực tiểu \( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\frac{{4 – m}}{m} < 0\end{array} \right. \Leftrightarrow m < 0\) Bình luận
Đáp án:
m<0
Giải thích các bước giải:
Ta có: \(y’ = 4m{x^3} + 4\left( {m – 4} \right)x = 4x\left( {m{x^2} + m – 4} \right)\)
\(y’ = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\m{x^2} = 4 – m\end{array} \right.\)
Hàm số có hai điểm cực đại và 1 điểm cực tiểu \( \Leftrightarrow \left\{ \begin{array}{l}m < 0\\\frac{{4 – m}}{m} < 0\end{array} \right. \Leftrightarrow m < 0\)